• 제목/요약/키워드: Two-Phase Jet

검색결과 97건 처리시간 0.024초

원형분류확산화염에서의 음파가진에 의한 혼합효과 (Mixing Effect by Tone-Excitation In Round Jet Diffusion Flame)

  • 김태권;박정;신현동
    • 대한기계학회논문집B
    • /
    • 제23권6호
    • /
    • pp.795-801
    • /
    • 1999
  • An experimental investigation has been conducted with the objective of studying the mixing mechanism near the nozzle exit in a tone-excited jet diffusion flame. The fuel jet was pulsed by means of a loudspeaker-driven cavity. The excitation frequencies were chosen for the two cases of the non-resonant and resonant frequency identified as a fuel tube resonance due to acoustic excitation. The effect of tone-excitations on mixing pattern near the nozzle exit and flame was visualized using various techniques, including schlieren photograph and laser light scattering photograph from $TiO_2$ seed particles. In order to clarify the details of the flame feature observed by visualization methods, hotwire measurements have been made. Excitation at the resonant frequency makes strong mixing near the nozzle. In this case, the fuel jet flow in the vicinity of nozzle exit breaks up into disturbed fuel parcels. This phenomena affects greatly the combustion characteristics of the tone excited jet and presumably occurs by flow separation from the wall inside the fuel nozzle. As a result, in the resonant frequency the flame length reduces greatly.

Characteristics of Droplet Properties in the Two-Phase Spray into a Subsonic Cross Flow

  • Lee, I.C.;Cho, W.J.;Koo, J.Y.
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2008년 영문 학술대회
    • /
    • pp.358-363
    • /
    • 2008
  • The spray cross-section characteristics of two-phase spray that using external-mixing nozzle injected into a subsonic cross flow were experimentally studied with various ALR ratio that is $0{\sim}59.4%$. Suction type wind tunnel was used and experiments were conducted to ambient environment. Several plain orifice nozzles with L/d of 30 and orifice diameter of 0.5 mm and orifice length 1.5 mm were tested. Free stream velocity profiles at the injection location were measured using hot wire. Spray images were captured to study collision point and column trajectory. Phase Doppler particle analyzer(PDPA) was utilized to quantitatively measuring droplet SMD, volume flux. Measuring probe of PDPA positions was moved 3-way transverse machine. SMD distributions were layered structure and peaked at the top of the spray plume and low value at bottom of the spray. Volume flux of spray was distributed to the two side region and volume flux quantity decreased when ALR ratio increased. It was found that the perpendicularly injected two-phase spray jet of external mixing into a cross flow showing that mistlike spray moved away from the test section bottom region.

  • PDF

고속 원형충돌제트의 불안정 특성 (Instabilities of High-speed Impinging Circular Jets)

  • 임정빈;권영필
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 1997년도 추계학술대회논문집; 한국과학기술회관; 6 Nov. 1997
    • /
    • pp.256-262
    • /
    • 1997
  • The characteristics of the unstable impinging circular jet were investigated based on the frequency characteristics and the sound field of the impinging-tones. Two symmetric modes Si and S2, associated with low frequency and high frequency respectively, and one helical mode H have been observed by measuring frequency and phase-distribution around the jet. Radiation characteristics of impinging-tone were studied by measuring axial directivity. It was founded that the radiation patterns of symmetric and helical mode are different and it is toward the plate as the impinging distance increased. By estimating the convection velocity of the unstable jet, it was founded that the convection speed decreases with the frequency and its decreasing pattern varies with unstable modes S1, S2 and H, respectively.

  • PDF

잠겨진 물체를 포함하는 계면유동의 수치적인 연구 (Numerical Study of Interfacial Flows With Immersed Solids)

  • 김성일;손기헌
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 추계학술대회
    • /
    • pp.706-711
    • /
    • 2003
  • A numerical method is presented for computing unsteady incompressible two-phase flows with immersed solids. The method is based on a level set technique for capturing the phase interface, which is modified to satisfy a contact angle condition at the solid-fluid interface as well as to achieve mass conservation during the whole calculation procedure. The modified level set method is applied for numerical simulation of bubble deformation in a micro channel with a cylindrical solid block and liquid jet from a micro nozzle.

  • PDF

2유체 분무노즐의 분열특성(I)-액주분열 및 내부유동- (Breakup Characteristics in Plain Jet Air Blast Atomizer(I)-Jet Breakup and Internal Flow-)

  • 김혁주;이충원
    • 대한기계학회논문집B
    • /
    • 제21권8호
    • /
    • pp.1009-1023
    • /
    • 1997
  • The breakup length of a liquid jet with flowrate, formed by releasing through a nozzle of circular cross-section into the atmosphere, was experimented and studied for 3 liquid nozzles of varying diameters. The experimental result was analyzed using the existing theoretical equation for predicting the breakup length. It was found that the breakup length of liquid jet depends on the velocity, and the breakup length increases with increasing of the liquid nozzle diameter. Also, the variation range of the breakup length for the same flowrate of liquid increased rapidly as velocity was increased for laminar flow, but in the turbulent flow region, it leveled off in the range of approximately 0.55-0.7 of the mean breakup length. Furthermore, when the longest smooth liquid jet was applied to the co-axial flow air blast atomizer, the effect of air flow on the flow pattern and breakup length was studied for 6 glass nozzles of different lengths and diameters. It was found that depending on the diameter of the mixing tube and liquid jet, it was possible to observe a wide range of flow patterns, such as liquid jet through flow, partial annular flow and annular flow. The liquid jet breakup length was more sensitive to the change in the length rather than the diameter of the mixing tube. As the length of the mixing tube shortens, the breakup length also shortens rapidly.

환형 이젝터 루프 내부의 이상유동특성 파악을 위한 수치해석 및 유동가시화 연구 (Numerical Analysis and Flow Visualization Study on Two-phase Flow Characteristics in Annular Ejector Loop)

  • 이동엽;김윤기;김현동;김경천
    • 한국가시화정보학회지
    • /
    • 제9권4호
    • /
    • pp.47-53
    • /
    • 2011
  • A water driven ejector loop was designed and constructed for air absorption. The used ejector was horizontally installed in the loop and annular water jet at the throat entrained air through the circular pipe placed at the center of the ejector. Wide range of water flow rate was provided using two kinds of pumps in the loop. The tested range of water flow rate was 100${\ell}$ /min to 1,000 ${\ell}$/min. Two-phase flow inside the ejector loop was simulated by CFD analysis. Homogeneous particle model was used for void fraction prediction. Water and air flow rates and pressure drop through the ejector were automatically recorded by using the LabView based data acquisition system. Flow characteristics and air bubble velocity field downstream of the ejector were investigated by two-phase flow visualization and PIV measurement based on bubble shadow images. Overall performance of the two-phase ejector predicted by the CFD simulation agrees well with that of the experiment.

축대칭 실린더형상 주위 부분공동 유동의 전산해석 (Numerical Analysis of Partial Cavitaing Flow Past Axisymmetric Cylinders)

  • 김봉수;이병우;박원규;정철민
    • 대한기계학회논문집B
    • /
    • 제33권2호
    • /
    • pp.69-78
    • /
    • 2009
  • Cavitating flow simulation is of practical importance for many hydraulic engineering systems, such as pump, turbine, nozzle, injector, etc. In the present work, a solver for cavitating flow has been developed and applied to simulate the flows past axisymmetric cylinders. Governing equations are the two-phase Navier-Stokes equations, comprised of continuity equation of liquid and vapor phase. The momentum equation is in the mixture phase. The solver employed an implicit, dual time, preconditioned algorithm in curvilinear coordinates. Computations were carried out for three axisymmetric cylinders: hemispherical, ogive, and caliber-0 forebody shape. Then, the present calculations were compared with experiments and other numerical results to validate the present solver. Also, the code has shown its capability to accurately simulate the re-entrant jet phenomena and ventilated cavitation. Hence, it has been found that the present numerical code has successfully accounted for cavitating flows past axisymmetric cylinders.

열린 공동 유동의 수치적 모사 및 Jet Blowing 을 이용한 제어 (Numerical Analysis and Control of Open Cavity Flow)

  • 장경식;박승오;최훈기
    • 한국항공우주학회지
    • /
    • 제30권5호
    • /
    • pp.101-108
    • /
    • 2002
  • 본 연구는 비압축성 열린 공동 유동에 대한 수치적 모사이다. 2차원 Navier-Stokes 방적식을 제어체적에 대해 엇갈림 격자계를 이용하여 공간에 대해서는 C-QUICK을 시간에 대해서는 내재적 기법을 이용하여 적분하였다. 압력장은 SIMPLE-C 알고리즘에 의하여 계산 되었다. 정상 모드에서는 나타나지 않지만 전단층 모드의 경우에 나타나는 세 번째 소용돌이가 공동 유동의 안정성에 중요한 역할을 하는 것을 알 수 있었다. 이를 바탕으로 공동 앞전 아래 벽면에 Jet blowing을 정상 상태와 비정상 상태로 가하여 그 영향을 알아보았다. 주기적인 blowing 인 경우 가진 주기와 위상차 그리고 속도 크기가 중요한 변수이며 이 변수들에 의한 영향을 연구하였다.