• 제목/요약/키워드: Two-Phase Jet

검색결과 97건 처리시간 0.025초

Integrated CFD on Atomization Process of Lateral Flow in Injector Nozzle

  • Ishimoto, Jun
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2006년도 추계 학술대회논문집
    • /
    • pp.7-8
    • /
    • 2006
  • The governing equations for high-speed lateral atomizing injector nozzle flow based on the LES-VOF model in conjunction with the CSF model are presented, and then an integrated parallel computation are performed to clarify the detailed atomization process of a high speed nozzle flow and to acquire data which is difficult to confirm by experiment such as atomization length, liquid core shapes, droplets size distributions, spray angle and droplets velocity profiles. According to the present analysis, it is found that the atomization rate and the droplets-gas two-phase flow characteristics are controlled by the turbulence perturbation upstream of the injector nozzle, hydrodynamic instabilities at the gas-liquid interface, shear stresses between liquid core and periphery of the jet. Furthermore, stable and a high-resolution computation can be attained in the high density ratio (pl/ pg = 554) conditions conditions by using our numerical method.

  • PDF

공급 질량비 변화에 따른 2유체 노즐의 액주분열특성에 관한 실험적 연구 (An Experimental Study on the Break-up Characteristics of Twin-Fluid Nozze According to tile Variations of Feeding Mass-ratio)

  • 강신재;오제하;노병준
    • 한국분무공학회지
    • /
    • 제1권1호
    • /
    • pp.63-75
    • /
    • 1996
  • The purpose of this study is to investigate the break-up characteristics by taking advantage of a two-phase coaxial nozzle. Air and water are utilized as working fluids and the mass ratio air/water has been controlled to characterize the atomization, diffusion and development of mixing process. By way of a photographic technique, conventional developing structures and diffusion angles have been analyzed systematically with variations of mass ratios. The turbulent flow components of the atomized particles were measured by a two channel LDV system and the data were treated by an on-lined measurement equipment. According to the photographic results the spreading angles decreased because the axial inertia moment was relatively higher than the lateral one with respect to the increase of mass ratio. It is found the jet flow diffuses linearly in a certain limit region while the atomizing characteristics, in terms of the distributions of particle diameters did not show particular differences. It may be expected that these fundamental results can be used as reference data in studying the atomization, breakup and diffusions.

  • PDF

태양에너지 이용 저압 증발식 해수 담수시스템 이젝터 CFD 해석 (Analysis of the ejector for low-pressure evaporative desalination system using solar energy)

  • 황인선;주홍진;곽희열
    • 한국태양에너지학회 논문집
    • /
    • 제30권6호
    • /
    • pp.137-143
    • /
    • 2010
  • In this study, the ejector design was modeled using Fluent 6.3 of FVM(Finite Volume Method) CFD(Computational Fluid Dynamics) techniques to resolve the flow dynamics in the ejector. A vacuum system with the ejector has been widely used because of its simple construction and easy maintenance. Ejector is the main part of the desalination system, of which designs determine the efficiency of system. The effects of the ejector was investigated geometry and the operating conditions in the hydraulic characteristics. The ejector consists mainly of a nozzle, suction chamber, mixing tube(throat), diffuser and draft tube. Liquid is supplied to the ejector nozzle, the fast liquid jet produced by the nozzle entrains and the non condensable gas was sucked into the mixing tube. In the present study, the multiphase CFD modeling was carried out to determine the hydrodynamic characteristics of seawater-air ejector. Two-dimensional geometry was considered with the quadrilateral-mashing scheme. The gas suction rate increases with increasing Motive flow circulating rate.

공기액체질량비에 따른 이류체 선회형 분사의 분무거동 및 미립화 특성 (Feature of Spray Transport and Atomization from Two-Phase Swirling Jet with Air-to-Liquid Mass Ratio)

  • Lee, Sam-Goo
    • 한국추진공학회지
    • /
    • 제8권2호
    • /
    • pp.39-45
    • /
    • 2004
  • 선회형 미립화기의 분무거동에 관한 논의는 현재 여러 연구자들에 의해 활발히 논의되고 있다. 본 연구에서는 이류체 내부혼합형 선회노즐의 특성을 파악하고자 공기와 액체의 질량 비를 바꿔가며 최적의 미립화 조건을 알아보기 위하여 실시되었다. 이를 위하여 분무 유동장의 평균속도, 파동속도 및 액적크기에 관한 비교를 정량적으로 분석하였다. 각 유동조건에 따른 지수함수를 만족하는 상관관계 또한 도출하였는데, 이는 질량 비에 관계없이 거의 동일함을 알 수 있었고, 질량비가 높을수록 선회 각이 30o인 경우가 미립화 특성이 가장 우수하였다. 따라서, 본 연구에서 이루어진 결과에서는 노즐의 형상이 분무유동에 미치는 여러 인자 중 가장 중요한 것이라 여겨진다.

가압형 경수로 압력용기 재료인 저합금강의 동적 붕산 부식 실증 연구 (Dynamic Boric Acid Corrosion of Low Alloy Steel for Reactor Pressure Vessel of PWR using Mockup Test)

  • 김성우;김홍표;황성식
    • Corrosion Science and Technology
    • /
    • 제12권2호
    • /
    • pp.85-92
    • /
    • 2013
  • This work is concerned with an evaluation of dynamic boric acid corrosion (BAC) of low alloy steel for reactor pressure vessel of a pressurized water reactor (PWR). Mockup test method was newly established to investigate dynamic BAC of the low alloy steel under various conditions simulating a primary water leakage incident. The average corrosion rate was measured from the weight loss of the low alloy steel specimen, and the maximum corrosion rate was obtained by the surface profilometry after the mockup test. The corrosion rates increased with the rise of the leakage rate of the primary water containing boric acid, and the presence of oxygen dissolved in the primary water also accelerated the corrosion. From the specimen surface analysis, it was found that typical flow-accelerated corrosion and jet-impingement occurred under two-phase fluid of water droplet and steam environment. The maximum corrosion rate was determined as 5.97 mm/year at the leakage rate of 20 cc/min of the primary water with a saturated content of oxygen within the range of experimental condition of this work.

고온기류중에 재분사된 연소기 후류의 수치해석 (Numerical simulation of combustor afterward sprayed in hot product stream)

  • 김태한;권형정
    • 대한기계학회논문집B
    • /
    • 제21권7호
    • /
    • pp.841-848
    • /
    • 1997
  • Combustion of gaseous fuel combustor in a high temperature vitiated air stream was studied with computer simulation. It is for application to afterburner of gas turbine engine which the exact mechanism is not yet clarified. As the jet velocity from fuel nozzle is very high and the geometry of combustor is three dimensional complex structure, many time and money are required to have good results. To consider this demerit, it is simplified to 2-dimensional and modified with the nozzle hole area to same area of annual status. As the thickness of annual is too thin, it is to divide with the many grids for reasonable results. Accordingly, new method which injected fuel mass, momentum and energy are added to source terms of each governing conservation equation as a source terms is introduced like as two phase analysis. Reaction rate is determined by taking into account the Arrhenius reaction based on a single step reaction mechanism. It is focused to temperature and product concentration distribution at each equivalence ratio of inlet hot product.

액체분무의 증발 및 연소에 관한 수치적 연구 (A Numerical Study on Evaporation and Combustion of Liquid Spray)

  • 정인철;이상용;백승욱
    • 대한기계학회논문집
    • /
    • 제15권6호
    • /
    • pp.2073-2082
    • /
    • 1991
  • 본 연구에서는 선회유동과 재순환영역이 있는 제한된 동축 분류유동(confined coaxial jet flow)을 갖는 연소기에 대하여 노즐을 통하여 분사된 연료액적의 증발 및 연소, 그리고 주위기체유동에 관한 제반현상을 정상상태 하에서 모사하고자 하는데 그 목적이 있으며 수치계산에 의한 이론적 해석방법으로 기상은 오일러 방식, 액상은 라 그란지 방식을 채택하였고 후술될 증발 및 연소모델을 적용하였다.

액상으로 분사되는 기체의 불안정성 해석 (Instability analysis of gas injection into liquid)

  • 김형준;권세진
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2006년도 제26회 춘계학술대회논문집
    • /
    • pp.57-60
    • /
    • 2006
  • 액상의 환경으로 고속의 기체가 분사될 때 기체-액체 표면에서 일어나는 불안정성에 대해 점성전위 유동의 이론을 이용하여 분석하였다. 기체의 속도가 낮을 경우 액상으로 기포로 형성되지만 속도가 증가하면서 기체는 제트의 형태로 변하게 되는데, 천음속 구간에서 제트로 변하게 되는 것으로 알려져 있다. 본 연구에서는 주로 액체 제트를 해석하는데 사용된 점성전위유동이론을 기체 제트의 불안정성 해석에 응용하였다. 천음속 구간에서 기체 제트의 성장률이 변하는 것을 확인하였다. 초음속 구간으로 가면서 성장률이 감소하는 것을 확인하였다. 그리고 이를 레이놀즈수와 같은 무차원수에 대해 기체 제트의 성장률의 변화에 대해 알아보았다.

  • PDF

지상 전투차량의 수상 추진 시 동적 안정성에 대한 연구 (Syudy on the dynamic Stability of Ground Armored Moving Vehicle during cruising river)

  • 안태술;이경훈
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년도 춘계학술대회논문집
    • /
    • pp.252-255
    • /
    • 2008
  • In this study, the characteristics of crossing a river of Ground Armored Vehicle (GAV) were evaluated by numerical method and real size tests. 3-D hybrid mesh systems were constructed by 3-D models of the GAV, and a commercial software, FLUENT, was used in numerical analysis. In order to deal with multi-phase problem (air and water), Volume Of Fluid (VOF) method was used, and Moving and Deforming Mesh (MDM) was adapted for unsteady motion of GAV. There were two steps in this research. Firstly, stability of the GAV which cruised a river was evaluated by changing several shapes of water-proof-front-wing of the GAV in steady state, and compared results (free surface shape and drag value in 10km/h) with those of real size tests. Secondly, results of unsteady analysis considering weight and moment of inertia of the GAV were presented. There were showed a maximum velocity with a designed water jet and dynamic stability including pitch, roll, and yaw moment. Based on these results, the optimal shape of water-proof-front-wing of the GAV was determined for a proto-type of the GAV.

  • PDF

반구형 전두부 실린더에서 발생하는 캐비테이션 유동의 압축성 효과에 대한 수치해석 연구 (NUMERICAL ANALYSIS OF CAVITATION WITH COMPRESSIBILITY EFFECTS AROUND HEMISPHERICAL HEAD-FORM BODY)

  • 박선호;이신형;신병록
    • 한국전산유체공학회지
    • /
    • 제18권4호
    • /
    • pp.9-16
    • /
    • 2013
  • Cavitation on an axi-symmetric hemispherical head-form body was studied using an Reynolds-averaged Navier-Stokes equations solver based on a cell-centered finite volume method. To consider compressibility effects on the vapor phase and cavity interface, a pressure-based compressible flow CFD code was developed. To validate the developed CFD code, cavitating flow around the hemispherical head-form body was simulated using pressure-based incompressible and compressible CFD codes and validated against existing experimental data in the three-way comparison. The cavity shedding behavior, length of re-entrant jet, drag history, and Strouhal number of the hemispherical head-form body were compared between two CFD codes. The results, in this paper, suggested that the computations of cavitating flow with compressibility effects improve the description of cavity dynamics.