• 제목/요약/키워드: Two-Phase Classification

검색결과 103건 처리시간 0.033초

Using Classification function to integrate Discriminant Analysis, Logistic Regression and Backpropagation Neural Networks for Interest Rates Forecasting

  • Oh, Kyong-Joo;Ingoo Han
    • 한국지능정보시스템학회:학술대회논문집
    • /
    • 한국지능정보시스템학회 2000년도 추계정기학술대회:지능형기술과 CRM
    • /
    • pp.417-426
    • /
    • 2000
  • This study suggests integrated neural network models for Interest rate forecasting using change-point detection, classifiers, and classification functions based on structural change. The proposed model is composed of three phases with tee-staged learning. The first phase is to detect successive and appropriate structural changes in interest rare dataset. The second phase is to forecast change-point group with classifiers (discriminant analysis, logistic regression, and backpropagation neural networks) and their. combined classification functions. The fecal phase is to forecast the interest rate with backpropagation neural networks. We propose some classification functions to overcome the problems of two-staged learning that cannot measure the performance of the first learning. Subsequently, we compare the structured models with a neural network model alone and, in addition, determine which of classifiers and classification functions can perform better. This article then examines the predictability of the proposed classification functions for interest rate forecasting using structural change.

  • PDF

두 단계 수리계획 접근법에 의한 신용평점 모델 (Credit Score Modelling in A Two-Phase Mathematical Programming)

  • Sung Chang Sup;Lee Sung Wook
    • 한국경영과학회:학술대회논문집
    • /
    • 대한산업공학회/한국경영과학회 2002년도 춘계공동학술대회
    • /
    • pp.1044-1051
    • /
    • 2002
  • This paper proposes a two-phase mathematical programming approach by considering classification gap to solve the proposed credit scoring problem so as to complement any theoretical shortcomings. Specifically, by using the linear programming (LP) approach, phase 1 is to make the associated decisions such as issuing grant of credit or denial of credit to applicants. or to seek any additional information before making the final decision. Phase 2 is to find a cut-off value, which minimizes any misclassification penalty (cost) to be incurred due to granting credit to 'bad' loan applicant or denying credit to 'good' loan applicant by using the mixed-integer programming (MIP) approach. This approach is expected to and appropriate classification scores and a cut-off value with respect to deviation and misclassification cost, respectively. Statistical discriminant analysis methods have been commonly considered to deal with classification problems for credit scoring. In recent years, much theoretical research has focused on the application of mathematical programming techniques to the discriminant problems. It has been reported that mathematical programming techniques could outperform statistical discriminant techniques in some applications, while mathematical programming techniques may suffer from some theoretical shortcomings. The performance of the proposed two-phase approach is evaluated in this paper with line data and loan applicants data, by comparing with three other approaches including Fisher's linear discriminant function, logistic regression and some other existing mathematical programming approaches, which are considered as the performance benchmarks. The evaluation results show that the proposed two-phase mathematical programming approach outperforms the aforementioned statistical approaches. In some cases, two-phase mathematical programming approach marginally outperforms both the statistical approaches and the other existing mathematical programming approaches.

  • PDF

스마트폰 내장 가속도 센서를 이용한 2단계 행위 인식 시스템의 설계 및 구현 (Design and Implementation of a Two-Phase Activity Recognition System Using Smartphone's Accelerometers)

  • 김종환;김인철
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제3권2호
    • /
    • pp.87-92
    • /
    • 2014
  • 본 논문에서는 스마트폰 내장 가속도 센서를 이용한 2단계 행위 인식 시스템을 제안한다. 제안하는 행위 인식 시스템에서는 각 행위 별 가속도 데이터의 시간적 변화 패턴을 충분히 반영하기 위해, 1단계에서는 결정트리(DT) 학습을 수행하고, 2단계에서는 1단계 분류 결과들의 시퀀스를 이용하여 은닉 마코프 모델(HMM) 학습을 수행한다. 또한, 견고한 행위 인식기를 얻기 위해, 동일한 행위에 대해 서로 사용자와 서로 다른 스마트폰 위치와 방향으로부터 수집한 다양한 대용량 데이터를 이용하여 본 시스템을 훈련하였다. 6가지 실내 행위들에 대해 수집한 6720개의 가속도 센서 데이터를 이용한 실험을 통해, 본 시스템은 앞서 설명한 설계 방식을 기초로 높은 인식 성능을 보여주었다.

EXTENSION OF CFD CODES APPLICATION TO TWO-PHASE FLOW SAFETY PROBLEMS

  • Bestion, Dominique
    • Nuclear Engineering and Technology
    • /
    • 제42권4호
    • /
    • pp.365-376
    • /
    • 2010
  • This paper summarizes the results of a Writing Group on the Extension of CFD codes to two-phase flow safety problems, which was created by the Group for Analysis and Management of Accidents of the Nuclear Energy Agency' Committee on the Safety of Nuclear Installations (NEA-CSNI). Two-phase CFD used for safety investigations may predict small scale flow processes, which are not seen by system thermalhydraulic codes. However, the two-phase CFD models are not as mature as those in the single phase CFD and potential users need some guidance for proper application. In this paper, a classification of various modelling approaches is proposed. Then, a general multi-step methodology for using two-phase-CFD is explained, including a preliminary identification of flow processes, a model selection, and a verification and validation process. A list of 26 nuclear reactor safety issues that could benefit from investigations at the CFD scale is identified. Then, a few issues are analyzed in more detail, and a preliminary state-of-the-art is proposed and the remaining gaps in the existing approaches are identified. Finally, guidelines for users are proposed.

Affective Computing in Education: Platform Analysis and Academic Emotion Classification

  • So, Hyo-Jeong;Lee, Ji-Hyang;Park, Hyun-Jin
    • International journal of advanced smart convergence
    • /
    • 제8권2호
    • /
    • pp.8-17
    • /
    • 2019
  • The main purpose of this study isto explore the potential of affective computing (AC) platforms in education through two phases ofresearch: Phase I - platform analysis and Phase II - classification of academic emotions. In Phase I, the results indicate that the existing affective analysis platforms can be largely classified into four types according to the emotion detecting methods: (a) facial expression-based platforms, (b) biometric-based platforms, (c) text/verbal tone-based platforms, and (c) mixed methods platforms. In Phase II, we conducted an in-depth analysis of the emotional experience that a learner encounters in online video-based learning in order to establish the basis for a new classification system of online learner's emotions. Overall, positive emotions were shown more frequently and longer than negative emotions. We categorized positive emotions into three groups based on the facial expression data: (a) confidence; (b) excitement, enjoyment, and pleasure; and (c) aspiration, enthusiasm, and expectation. The same method was used to categorize negative emotions into four groups: (a) fear and anxiety, (b) embarrassment and shame, (c) frustration and alienation, and (d) boredom. Drawn from the results, we proposed a new classification scheme that can be used to measure and analyze how learners in online learning environments experience various positive and negative emotions with the indicators of facial expressions.

OptiNeural System for Optical Pattern Classification

  • Kim, Myung-Soo
    • Journal of Electrical Engineering and information Science
    • /
    • 제3권3호
    • /
    • pp.342-347
    • /
    • 1998
  • An OptiNeural system is developed for optical pattern classification. It is a novel hybrid system which consists of an optical processor and a multilayer neural network. It takes advantages of two dimensional processing capability of an optical processor and nonlinear mapping capability of a neural network. The optical processor with a binary phase only filter is used as a preprocessor for feature extraction and the neural network is used as a decision system through mapping. OptiNeural system is trained for optical pattern classification by use of a simulated annealing algorithm. Its classification performance for grey tone texture patterns is excellent, while a conventional optical system shows poor classification performance.

  • PDF

THE CALIBRATION ESTIMATION USING TWO-STEP NEWTON'S ALGORITHM IN TWO-PHASE SAMPLING

  • Son, Chang-Kyoon;Yum, Joon-Keun
    • Journal of applied mathematics & informatics
    • /
    • 제7권1호
    • /
    • pp.237-245
    • /
    • 2000
  • In this paper, we consider to the adjustment weighting procedure in the two phase sampling scheme. In general, the unit nonresponses may be occured in the final survey operation. When the unit nonresponse be generated in survey, it is able to use the auxiliary variable for estimating of interest variable. In this viewpoint, we use the two kinds level of auxiliary variable, $X_{1k}$ and $X_{2k}$ for the calibration procedure. We proprose the two-step Newton's method in the calibration estimation procedure for the two phase sampling.

Two-Dimensional Qualitative Asset Analysis Method based on Business Process-Oriented Asset Evaluation

  • Eom, Jung-Ho;Park, Seon-Ho;Kim, Tae-Kyung;Chung, Tai-Myoung
    • Journal of Information Processing Systems
    • /
    • 제1권1호
    • /
    • pp.79-85
    • /
    • 2005
  • In this paper, we dealt with substantial asset analysis methodology applied to two-dimensional asset classification and qualitative evaluation method according to the business process. Most of the existent risk analysis methodology and tools presented classification by asset type and physical evaluation by a quantitative method. We focused our research on qualitative evaluation with 2-dimensional asset classification. It converts from quantitative asset value with purchase cost, recovery and exchange cost, etc. to qualitative evaluation considering specific factors related to the business process. In the first phase, we classified the IT assets into tangible and intangible assets, including human and information data asset, and evaluated their value. Then, we converted the quantitative asset value to the qualitative asset value using a conversion standard table. In the second phase, we reclassified the assets using 2-dimensional classification factors reflecting the business process, and applied weight to the first evaluation results. This method is to consider the organization characteristics, IT asset structure scheme and business process. Therefore, we can evaluate the concrete and substantial asset value corresponding to the organization business process, even if they are the same asset type.

비비등 선회유동에서의 2상 대류열전달 증가 (Two phase convective heat transfer augmentation in swirl flow with non-boiling)

  • 차경옥;김재근
    • 대한기계학회논문집
    • /
    • 제19권10호
    • /
    • pp.2586-2594
    • /
    • 1995
  • Two phase flow phenomena are observed in many industrial facilities and make much importance of optimum design for nuclear power plant and various heat exchangers. This experimental study has been investigated the classification of the flow pattern, the local void distribution and convective heat transfer in swirl and non-swirl two phase flow under the isothermal and nonisothermal conditions. The convective heat transfer coefficients in the single phase water flow were measured and compared with the calculated results from the Sieder-Tate correlation. These coefficients were used for comparisons with the two-phase heat transfer coefficients in the flow orientations. The experimental results indicate, that the void probe signal and probability density function of void distribution can used into classify the flow patterns, no significant difference in voidage distribution was observed between isothermal and non-isothermal condition in non-swirl flow, the values of two phase heat transfer coefficients increase when superficial air velocities increase, and the enhancement of the values is observed to be most pronounced at the highest superficial water velocity in non-swirl flow. Also two phase heat transfer coefficients in swirl flow are increased when the twist ratios are decreased.

Artificial Neural Network for Quantitative Posture Classification in Thai Sign Language Translation System

  • Wasanapongpan, Kumphol;Chotikakamthorn, Nopporn
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.1319-1323
    • /
    • 2004
  • In this paper, a problem of Thai sign language recognition using a neural network is considered. The paper addresses the problem in classifying certain signs conveying quantitative meaning, e.g., large or small. By treating those signs corresponding to different quantities as derived from different classes, the recognition error rate of the standard multi-layer Perceptron increases if the precision in recognizing different quantities is increased. This is due the fact that, to increase the quantitative recognition precision of those signs, the number of (increasingly similar) classes must also be increased. This leads to an increase in false classification. The problem is due to misinterpreting the amount of quantity the quantitative signs convey. In this paper, instead of treating those signs conveying quantitative attribute of the same quantity type (such as 'size' or 'amount') as derived from different classes, here they are considered instances of the same class. Those signs of the same quantity type are then further divided into different subclasses according to the level of quantity each sign is associated with. By using this two-level classification, false classification among main gesture classes is made independent to the level of precision needed in recognizing different quantitative levels. Moreover, precision of quantitative level classification can be made higher during the recognition phase, as compared to that used in the training phase. A standard multi-layer Perceptron with a back propagation learning algorithm was adapted in the study to implement this two-level classification of quantitative gesture signs. Experimental results obtained using an electronic glove measurement of hand postures are included.

  • PDF