• Title/Summary/Keyword: Two-Phase

Search Result 9,547, Processing Time 0.038 seconds

Novel PWM Methods for Two-Leg and Four-leg Two-Phase Inverter Fed Two-Phase Induction Motor (2상 유도전동기 구동 2상 인버터를 위한 새로운 PWM제어방식 I - 2-레그 타입 및 4-레그 타입의 경우 -)

  • Jang Do-Hyun
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.10 no.4
    • /
    • pp.331-338
    • /
    • 2005
  • In this paper the novel pulsewidth modulation(PWM) technique for the two-leg and four-leg two-phase inverter is proposed. The conventional space vector PWM technique for two-phase inverter was complex. The proposed PWM for two-leg inverter, which is used by sinusoidal PWM method, is simpler than the conventional SVPWU technique. Also, a simple PWM technique for four-leg two-phase inverter is proposed. Such PWM technique is based on PWM technique for two-leg inverter. Practical verification of theoretical predictions is presented to confirm the capabilities of the new techniques.

Numerical Modeling of Two-Phase Non-Isothermal Turbulent Jet (비등온 난류 제트의 이상유동에 대한 수치모델)

  • Lien, Hoang Duc;Kim, Myong-Kwan;Kwon, Oh-Boong
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.783-788
    • /
    • 2001
  • Choosing the most suitable mathematical model and relating this to turbulent tangential tensions model are very important in the investigations of turbulent two-phase flow. This paper considers two-fluid scheme. According to it, two phases have their own densities, velocities, and temperatures at any spatial point and at any moment. The equations of motion and heat transfer for each phase are linked with the forces of interaction between two phases. These forces are considered as predominant for the flow. As a closure in the system of motion equations, one modification of $K - {\epsilon}$ turbulent model is worked out. The modification uses two equations for turbulent kinetic energy of the phases and one - for the turbulent energy loss of main phase. This model can be set as a $K_g - K_p -{\epsilon}$ model. The modified model has been tested for both a two-phase non-isothermal flat jet and axially symmetrical jet. The numerical results are compared with the reference data revealing a good agreement between them.

  • PDF

An Investigation of Lattice Boltzmann Multi-phase Model and it Application (래티스볼츠만 다상류 모델의 검토 및 응용)

  • Kang, Ho-Keun;Ahn, Soo-Whan
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.269-270
    • /
    • 2006
  • A finite difference lattice Boltzmann model which allows us to simulate gas-liquid two-phase flows with large density difference, for instance, 800 times for air and water is considered. Two-particle model is used and the density difference is introduced by changing the acceleration according to the fluid density. Numerical measurement of surface tension agrees well with theoretical predictions. Simulations of two-phase phenomenon for phase-transition is carried out, showing applicability of the model for two-phase flows. The two-dimensional cavitating flow around a board set up in the fluid way is also simulated. As a result, it was confirmed that the FDLB method with two-particle model was effective in numerical simulation of cavitating flow and the bubble periodically grew up at the low pressure area behind the board, in which the fluid condition was influenced by the cavitation number.

  • PDF

EXTENSION OF CFD CODES APPLICATION TO TWO-PHASE FLOW SAFETY PROBLEMS

  • Bestion, Dominique
    • Nuclear Engineering and Technology
    • /
    • v.42 no.4
    • /
    • pp.365-376
    • /
    • 2010
  • This paper summarizes the results of a Writing Group on the Extension of CFD codes to two-phase flow safety problems, which was created by the Group for Analysis and Management of Accidents of the Nuclear Energy Agency' Committee on the Safety of Nuclear Installations (NEA-CSNI). Two-phase CFD used for safety investigations may predict small scale flow processes, which are not seen by system thermalhydraulic codes. However, the two-phase CFD models are not as mature as those in the single phase CFD and potential users need some guidance for proper application. In this paper, a classification of various modelling approaches is proposed. Then, a general multi-step methodology for using two-phase-CFD is explained, including a preliminary identification of flow processes, a model selection, and a verification and validation process. A list of 26 nuclear reactor safety issues that could benefit from investigations at the CFD scale is identified. Then, a few issues are analyzed in more detail, and a preliminary state-of-the-art is proposed and the remaining gaps in the existing approaches are identified. Finally, guidelines for users are proposed.

Trajectory Optimization for Autonomous Berthing of a Twin-Propeller Twin-Rudder Ship

  • Changyu Lee;Jinwhan Kim
    • Journal of Ocean Engineering and Technology
    • /
    • v.37 no.3
    • /
    • pp.122-128
    • /
    • 2023
  • Autonomous berthing is a crucial technology for autonomous ships, requiring optimal trajectory planning to prevent collisions and minimize time and control efforts. This paper presents a two-phase, two-point boundary value problem (TPBVP) strategy for creating an optimal berthing trajectory for a twin-propeller, twin-rudder ship with autonomous berthing capabilities. The process is divided into two phases: the approach and the terminal. Tunnel thruster use is limited during the approach but fully employed during the terminal phase. This strategy permits concurrent optimization of the total trajectory duration, individual phase trajectories, and phase transition time. The efficacy of the proposed method is validated through two simulations. The first explores a scenario with phase transition, and the second generates a trajectory relying solely on the approach phase. The results affirm our algorithm's effectiveness in deciding transition necessity, identifying optimal transition timing, and optimizing the trajectory accordingly. The proposed two-phase TPBVP approach holds significant implications for advancements in autonomous ship navigation, enhancing safety and efficiency in berthing operations.

The study on the Two-Phase Swirl Flow Characteristics in Cylindrical Pipe (원관내의 이상선회유동 특성에 관한 연구)

  • 차경옥;김재근
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.1
    • /
    • pp.187-197
    • /
    • 1996
  • Many investigations have been made to determine the pressure drop and heat transfer characteristics for single phase flow in tape generated swirl flow. But few studies have been carried out to investigate the heat transfer in two component, two phase swirl flow with non-boiling. An experimental study has been conducted to determine the effects of tape twist ratios on two phase convective heat transfer coefficients, pressure drop, and void fraction distribution in a non-boiling, air-water, two phase flow. The flow conditions were both swirl and non swirl flows. The internal diameter of the test section is 42.5mm. The tape twist ratios of pitch to diameter ratio varied from 4.0 to 10.6. The heating conditions were isothermal and nonisothermal. The flow patterns identified with experiments were bubbly, bubbly-slug, slug, and slug-annular flow in up-flow. This study has concluded that no significant difference in void fraction distribution were observed both isothermal and nonisothermal conditions, the pressure drop for two phase flow with twisted tape swirler increase as the tape twist ratio decrease, and that values of two phase heat transfer coefficient increase when the tape twist ratio decreases.

  • PDF

Study on Design of Air-water Two-phase Flow Centrifugal Pump Based on Similarity Law

  • Matsushita, Naoki;Furukawa, Akinori;Watanabe, Satoshi;Okuma, Kusuo
    • International Journal of Fluid Machinery and Systems
    • /
    • v.2 no.2
    • /
    • pp.127-135
    • /
    • 2009
  • A conventional centrifugal pump causes a drastic deterioration of air-water two-phase flow performances even at an air-water two-phase flow condition of inlet void fraction less than 10% in the range of relatively low water flow rate. Then we have developed a two-phase flow centrifugal pump which consists of a tandem arrangement of double rotating cascades and blades of outer cascade have higher outlet angle more than $90^{\circ}$. In design of the two-phase flow pump for various sized and operating conditions, similarity relations of geometric dimensions to hydraulic performances is very useful. The similarity relations of rotational speed, impeller diameter and blade height are investigated for the developed impeller in the present paper. As the results, the similarity law of rotational speed and impeller diameter is clarified experimentally even in two-phase flow condition. In addition, influences of blade height on air-water two-phase flow performances indicate a little difference from the similarity relations.

Development of a prediction model relating the two-phase pressure drop in a moisture separator using an air/water test facility

  • Kim, Kihwan;Lee, Jae bong;Kim, Woo-Shik;Choi, Hae-seob;Kim, Jong-In
    • Nuclear Engineering and Technology
    • /
    • v.53 no.12
    • /
    • pp.3892-3901
    • /
    • 2021
  • The pressure drop of a moisture separator in a steam generator is the important design parameter to ensure the successful performance of a nuclear power plant. The moisture separators have a wide range of operating conditions based on the arrangement of them. The prediction of the pressure drop in a moisture separator is challenging due to the complexity of the multi-dimensional two-phase vortex flow. In this study, the moisture separator test facility using the air/water two-phase flow was used to predict the pressure drop of a moisture separator in a Korean OPR-1000 reactor. The prototypical steam/water two-phase flow conditions in a steam generator were simulated as air/water two-phase flow conditions by preserving the centrifugal force and vapor quality. A series of experiments were carried out to investigate the effect of hydraulic characteristics such as the quality and liquid mass flux on the two-phase pressure drop. A new prediction model based on the scaling law was suggested and validated experimentally using the full and half scale of separators. The suggested prediction model showed good agreement with the steam/water experimental results, and it can be extended to predict the steam/water two-phase pressure drop for moisture separators.

Two-Phase Flow Analysis of The Hydrogen Recirculation System for Automotive Pem Fuel Cell (자동차용 고분자 연료전지 수소 재순환 시스템의 이상 유동해석)

  • Kwag, Hyun-Ju;Chung, Jin-Taek;Kim, Jae-Choon;Kim, Yong-Chan;Oh, Hyung-Seuk
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.6
    • /
    • pp.446-454
    • /
    • 2008
  • The purpose of this paper is to analyze two-phase flows of the hydrogen recirculation system. Two-phase flow modeling is one of the great challenges in the classical sciences. As with most problems in engineering, the interest in two-phase flow is due to its extreme importance in various industrial applications. In hydrogen recirculation systems of fuel cell, the changes in pressure and temperature affect the phase change of mixture. Therefore, two-phase flow analysis of the hydrogen recirculation system is very important. Two-phase computation fluid dynamics (CFD) calculations, using a commercial CFD package FLUENT 6.2, were employed to calculate the gas-liquid flow. A two-phase flow calculation was conducted to solve continuity, momentum, energy equation for each phase. Then, the mass transfer between water vapor and liquid water was calculated. Through an experiment to measure production of liquid water with change of pressure, the analysis model was verified. The predictions of rate of condensed liquid water with change of pressure were within an average error of about 5%. A comparison of experimental and computed data was found to be in good agreement. The variations of performance, properties, mass fraction and two-phase flow characteristic of mixture with resepct to the fuel cell power were investigated.