• 제목/요약/키워드: Two-Dimensional Turbulent Flow

검색결과 348건 처리시간 0.028초

노즐내 물체의 후류가 아음속 이차원 제트구조에 미치는 영향에 관한 연구 (Effect of a Turbulent Wake on Two-Dimensional Subsonic Jet)

  • 김태호;이상찬;윤복현;오대근;김희동
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 추계학술대회
    • /
    • pp.986-991
    • /
    • 2003
  • A turbulent wake generated by a cylinder in nozzle contraction affects to the jet flow characteristics. In this study, a computational work to investigate the effect of the turbulent wake on two-dimensional subsonic jet was carried out with three different kinds of nozzle. Computations are applied to the two-dimensional unsteady, Navier-Stokes equations. Several kinds of turbulent models and wall functions are employed to validate the computational predictions. It was known that the wake flow enhanced the spread of the jet flow, compared with no wake flow condition. It was also found that the jet core is shortened by the wake flow developed from a control cylinder.

  • PDF

건물 계단통에서의 부력에 의한 난류유동 해석 (Simulation of buoyant turbulent flow in a stairwell)

  • 명현국;진은주
    • 설비공학논문집
    • /
    • 제10권2호
    • /
    • pp.217-226
    • /
    • 1998
  • A numerical study has been carried out for two- and three-dimensional buoyant turbulent flow in a stairwell model. The Reynolds-averaged Navier-Stokes and energy equations are solved with the authors'own computer program. Two models by the Boussinesq approximation and the density-gradient form are used for buoyancy terms in the governing equations. Two- and three-dimensional predictions of the velocity and temperature fields are presented and the results are compared with experimental data. Comparisons have also been made in detail with two-dimensional predictions. Two-dimensional and three-dimensional simulations have predicted the overall features of the flow satisfactorily. A better agreement with experiment is achieved with three-dimensional simulations.

  • PDF

Comparative study of turbulent flow around a bluff body by using two- and three-dimensional CFD

  • Ozdogan, Muhammet;Sungur, Bilal;Namli, Lutfu;Durmus, Aydin
    • Wind and Structures
    • /
    • 제25권6호
    • /
    • pp.537-549
    • /
    • 2017
  • In this study, the turbulent flow around a bluff body for different wind velocities was investigated numerically by using its two- and three-dimensional models. These models were tested to verify the validity of the simulation by being compared with experimental results which were taken from the literature. Variations of non-dimensional velocities in different positions according to the bluff body height were analysed and illustrated graphically. When the velocity distributions were examined, it was seen that the results of both two- and three-dimensional models agree with the experimental data. It was also seen that the velocities obtained from two-dimensional model matched up with the experimental data from the ground to the top of the bluff body. Particularly, compared to the front part of the bluff body, results of the upper and back part of the bluff body are better. Moreover, after comparing the results from calculations by using different models with experimental data, the effect of multidimensional models on the obtained results have been analysed for different inlet velocities. The calculation results from the two-dimensional (2D) model are in satisfactory agreement with the calculation results of the three-dimensional model (3D) for various flow situations when comparing with the experimental data from the literature even though the 3D model gives better solutions.

선회유동을 가지는 난류 예혼합 부상화염장의 해석 (Numerical Modeling of Turbulent Swirling Premixed Lifted Flames)

  • 강성모;김용모;정재화;안달홍
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2006년도 제32회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.89-95
    • /
    • 2006
  • This study has numerically modelled the combustion processes of the turbulent swirling premixed lifted flames in the low-swirl burner (LSB). In these turbulent swirling premixed flames, the four tangentially-injected air jets induce the turbulent swirling flow which plays the crucial role to stabilize the turbulent lifted flame. In the present approach, the turbulence-chemistry interaction is represented by the level-set based flamelet model. Two-dimensional and three-dimensional computations are made for the various swirl numbers and nozzle length. In terms of the centerline velocity profiles and flame liftoff heights, numerical results are compared with experimental data The three-dimensional approach yields the much better conformity with agreements with measurements without any analytic assumptions on the inlet swirl profiles, compared to the two-dimensional approach. Numerical clearly results indicate that the present level-set based flamelet approach has realistically simulated the structure and stabilization mechanism of the turbulent swirling stoichiometric and lean-premixed lifted flames in the low-swirl burner.

  • PDF

2차원 채널 충돌제트에서 난류강도의 변화에 대한 유동 및 열전달 특성 (A Characteristics of Flow and Heat Transfer for Variation of Turbulence Intensity In the Two-Dimensional Channel Impinging Jet)

  • 윤순현;김동건;김문경
    • 대한기계학회논문집B
    • /
    • 제23권6호
    • /
    • pp.753-760
    • /
    • 1999
  • Experiments were conducted to investigate the effect of the initial turbulent intensity on the flow and heat transfer characteristics for a two-dimensional impinging jet. A square rod was installed at the nozzle exit to increase initial turbulent intensity. A hot wire probe and thermochromic liquid crystal technique were used to measure the turbulent intensity and the surface temperature. All measurements were made over a range of nozzle-to-plate distance from 1 to 10 at Re=20,000. When the rod is not installed, the maximum stagnation point Nusselt number is occurred at H/B=9. A higher initial turbulent intensity enhanced the heat transfer on the surface. A correlation between stagnation point Nusselt number and turbulent intensity are presented.

냉장고용 소형 축류홴의 통계학적 3차원 난류유동 특성에 관한 연구 (A Study on the Three Dimensional Statistical Turbulent Flow Characteristics Around a Small-Sized Axial Fan for Refrigerator)

  • 김장권
    • 대한기계학회논문집B
    • /
    • 제25권6호
    • /
    • pp.819-828
    • /
    • 2001
  • The operating point of a small-sized axial fan is strongly dependent upon the system resistance. Therefore, the turbulent flow characteristics around a small-sized axial fan may change significantly according to the operating point. This study represents three-dimensional turbulent flow characteristics around a small-sized axial fan measured at the ideal design point $\phi$=0.25, which is equivalent to the maximum total efficiency point, by using three dimensional fiber-optic type LDA system. This LDA system is composed of a 5 W Argon-ion laser, two optics in back-scatter mode, three BSAs, a PC, and a three-dimensional automatic traversing system. A kind of paraffin fluid is used to supply particles by means of fog generator. Mean velocity profiles downstream of a small-sized axial fan along the radial distance show that the streamwise and the tangential components exist in a predominant manner, while the radial component has a small scale distribution and shows the inflection which its flow direction is inward or outward. Moreover, the turbulent intensity profiles show that the radial component exists the most greatly among turbulent energies.

실린더 후류를 이용한 2 차원 아음속 디퓨저 유동의 제어에 관한 연구 (A Control of Two-Dimensional Subsonic Diffuser Flow Using the Turbulent Wake Caused by a Cylinder)

  • 김태호;이상찬;윤복현;김희동
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 추계학술대회
    • /
    • pp.980-985
    • /
    • 2003
  • The present study addresses a computational work to investigate the influence of a turbulent wake flow on the pressure recovery of a subsonic diffuser. The turbulent wake is generated by a cylinder with a small diameter, which is installed at the inlet of a 2-dimensional diffuser. Computation are applied to three-dimensional steady Navier-Stokes equations. The fully implicit finite volume scheme is used to discretize the governing equations. The computational results are qualitatively well compared to the experimental results. The results show that the pressure recovery of the subsonic diffuser is dependent on the diameter and location of cylinder. It is found that a certain diameter and location of the cylinder to generate the turbulent wake give a better pressure recovery, compared with no cylinder flow.

  • PDF

단일 공동주위의 2차원과 3차원 초음속 유동 비교 (COMPARISON OF TWO- AND THREE-DIMENSIONAL SUPERSONIC TURBULENT FLOWS OVER A SINGLE CAVITY)

  • 우철훈;김재수
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2005년도 추계 학술대회논문집
    • /
    • pp.235-238
    • /
    • 2005
  • The unsteady supersonic flow over two- and three-Dimensional cavities has been analyzed by the integration of unsteady Reynolds-Averaged Navier-Stokes(RANS) with the k - w turbulence model. The unsteady flow is characterized by the periodicity due to the mutual relation between the shear layer and the internal flow in cavities. Numerical method is upwind TVD scheme based on the flux vector split with the Van Leer limiters, and time accuracy is used explicit 4th stage Runge-Kutta scheme. Cavity flows are Comparison of two- and three-dimensional. The cavity has a L/D ratio of 3 for two-dimensional case. and same L/D and W/D ratio is 1 for three-dimensional case. The Mach and Reynolds numbers are held constant at 1.5 and 450000 respectively. For the three-dimensional case, the flow field is observed to oscillate in the 'shear layer mode' with a feedback mechanism that follow Rossiter's formula. On the other hand, the self-sustained oscillating flow transitions to a 'wake mode' for the two-dimensional simulation, with more violent fluctuations inside the cavity.

  • PDF

Turbulent properties in a mixed statistically stationary flow

  • Baek, Tae-Sil;Doh, Deog-Hee
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제37권7호
    • /
    • pp.729-736
    • /
    • 2013
  • The turbulent properties in a mixed statistically stationary flow were investigated experimentally by a pseudo stereoscopic PIV. In order to validate the experimental results, the profiles of the turbulent kinetic energy were evaluated with the flow features. A mechanical agitator having 6 blades was installed at the bottom of the mixing tank (D=60cm, H=60cm). The agitator was rotated with 80rpm clockwise and counter-clockwise. For the measurements, three cameras were used and all were synchronized. The images captured by one of the three cameras was used for the measurement of rotational speed, and the images captured by the other two cameras were used to measure three dimensional components of velocity vectors. All vectors captured at the same rotational angle were phase averaged to construct three-dimensional vector fields to reconstruct the spatial distribution of the flow properties. It was seen that the jet scrolling along the tank was the main source of mixing.

난류상태로 운전되는 저어널베어링에서의 $kappa-varepsilon$ 모델을 이용한 3-차원 THD해석 (Three-Dimensional Thermohydrodynamic Analysis of Journal Bearings Operating in Turbulent Region Using $kappa-varepsilon$ Model)

  • 이득우;김경웅
    • Tribology and Lubricants
    • /
    • 제3권1호
    • /
    • pp.39-46
    • /
    • 1987
  • Frictional loss in turbulent regime is abnormally increased compared with in laminar regime. Thus the consideration of temperature rise across fluid film is significant in analysis and conventional isothermal theory loses its usefulness for performance prediction. This paper proposes to the three-dimensional thermohydrodynamic analysis of finite journal bearings operating under turbulent condition using two-equation model($\kappa-\varepsilon$ model) proposed by Hassid & Poreh. The equations are solved numerically by finite difference method. We make the analysis applicable even at large eccentricity when back flow of the lubricants occurs and axial flow is no longer ignored compared to circumferential flow.