• Title/Summary/Keyword: Two-Dimensional

Search Result 12,449, Processing Time 0.039 seconds

Numerical analysis of morphological changes by opening gates of Sejong Weir (보 개방에 의한 하도의 지형변화 과정 수치모의 분석(세종보를 중심으로))

  • Jang, Chang-Lae;Baek, Tae Hyo;Kang, Taeun;Ock, Giyoung
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.8
    • /
    • pp.629-641
    • /
    • 2021
  • In this study, a two-dimensional numerical model (Nays2DH) was applied to analyze the process of morphological changes in the river channel bed depending on the changes in the amount of flooding after fully opening the Sejong weir, which was constructed upstream of the Geum River. For this, numerical simulations were performed by assuming the flow conditions, such as a non-uniform flow (NF), unsteady flows (single flood event, SF), and a continuous flood event (CF). Here, in the cases of the SF and CF, the normalized hydrograph was calculated from real flood events, and then the hydrograph was reconfigured by the peak flow discharge according to the scenario, and then it was employed as the flow discharge at the upstream boundary condition. In this study, to quantitatively evaluate the morphological changes, we analyzed the time changes in the bed deformation the bed relief index (BRI), and we compared the aerial photographs of the study area and the numerical simulation results. As simulation results of the NF, when the steady flow discharge increases, the ratio of lower width to depth decreases and the speed of bar migration increases. The BRI initially increases, but the amount of change decreased with time. In addition, when the steady flow discharge increases, the BRI increased. In the case of SF, the speed of bar migration decreased with the change of the flow discharge. In terms of the morphological response to the peak flood discharge, the time lag also indicated. In other words, in the SF, the change of channel bed indicates a phase lag with respect to the hydraulic condition. In the result of numerical simulation of CF, the speed of bar migration depending on the peak flood discharges decreased exponentially despite the repeated flood occurrences. In addition, as in the result of SF, the phase lag indicated, and the speed of bar migration decreased exponentially. The BRI increased with time changes, but the rate of increase in the BRI was modest despite the continuous peak flooding. Through this study, the morphological changes based on the hydrological characteristics of the river were analyzed numerically, and the methodology suggested that a quantitative prediction for the river bed change according to the flow characteristic can be applied to the field.

Estimation of ecological flow and fish habitats for Andong Dam downstream reach using 1-D and 2-D physical habitat models (1차원 및 2차원 물리서식처 모형을 활용한 안동댐 하류 하천의 환경생태유량 및 어류서식처 추정)

  • Kim, Yongwon;Lee, Jiwan;Woo, Soyoung;Kim, Soohong;Lee, Jongjin;Kim, Seongjoon
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.12
    • /
    • pp.1041-1052
    • /
    • 2022
  • This study is to estimate the optimal ecological flow and analysis the spatial distribution of fish habitat for Andong dam downstream reach (4,565.7 km2) using PHABSIM (Physical Habiat Simulation System) and River2D. To establish habitat models, the cross-section informations and hydraulic input data were collected uisng the Nakdong river basic plan report. The establishment range of PHABSIM was set up about 410.0 m from Gudam streamflow gauging station (GD) and about 6.0 km including GD for River2D. To select representative fish species and construct HSI (Habitat Suitability Index), the fish survey was performed at Pungji bridge where showed well the physical characteristics of target stream located downstream of GD. As a result of the fish survey, Zacco platypus was showed highly relative abundance resulting in selecting as the representative fish species, and HSI was constructed using physical habitat characteristics of the Zacco platypus. The optimal range of HSI was 0.3~0.5 m/s at the velocity suitability index, 0.4~0.6 m at the depth suitability index, and the substrate was sand to fine gravel. As a result of estimating the optimal ecological flow by applying HSI to PHABSIM, the optimal ecological flow for target stream was 20.0 m3/sec. As a result of analysis two-dimensional spatial analysis of fish habitat using River2D, WUA (Weighted Usable Area) was estimated 107,392.0 m2/1000 m under the ecological flow condition and it showed the fish habitat was secured throughout the target stream compared with Q355 condition.

A Study on the Development Direction of Medical Image Information System Using Big Data and AI (빅데이터와 AI를 활용한 의료영상 정보 시스템 발전 방향에 대한 연구)

  • Yoo, Se Jong;Han, Seong Soo;Jeon, Mi-Hyang;Han, Man Seok
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.11 no.9
    • /
    • pp.317-322
    • /
    • 2022
  • The rapid development of information technology is also bringing about many changes in the medical environment. In particular, it is leading the rapid change of medical image information systems using big data and artificial intelligence (AI). The prescription delivery system (OCS), which consists of an electronic medical record (EMR) and a medical image storage and transmission system (PACS), has rapidly changed the medical environment from analog to digital. When combined with multiple solutions, PACS represents a new direction for advancement in security, interoperability, efficiency and automation. Among them, the combination with artificial intelligence (AI) using big data that can improve the quality of images is actively progressing. In particular, AI PACS, a system that can assist in reading medical images using deep learning technology, was developed in cooperation with universities and industries and is being used in hospitals. As such, in line with the rapid changes in the medical image information system in the medical environment, structural changes in the medical market and changes in medical policies to cope with them are also necessary. On the other hand, medical image information is based on a digital medical image transmission device (DICOM) format method, and is divided into a tomographic volume image, a volume image, and a cross-sectional image, a two-dimensional image, according to a generation method. In addition, recently, many medical institutions are rushing to introduce the next-generation integrated medical information system by promoting smart hospital services. The next-generation integrated medical information system is built as a solution that integrates EMR, electronic consent, big data, AI, precision medicine, and interworking with external institutions. It aims to realize research. Korea's medical image information system is at a world-class level thanks to advanced IT technology and government policies. In particular, the PACS solution is the only field exporting medical information technology to the world. In this study, along with the analysis of the medical image information system using big data, the current trend was grasped based on the historical background of the introduction of the medical image information system in Korea, and the future development direction was predicted. In the future, based on DICOM big data accumulated over 20 years, we plan to conduct research that can increase the image read rate by using AI and deep learning algorithms.

The Study of the Two-Dimensional Suicidal Type Based on Psychological Autopsy: A Focus on Suicidal Behaviors and Suicidal Risk Factors (한국형 심리부검 기반 이차원적 자살유형 연구: 자살행동과 자살위험요인을 중심으로)

  • Sung-pil Yook;Jonghan Sea
    • Korean Journal of Culture and Social Issue
    • /
    • v.29 no.1
    • /
    • pp.75-99
    • /
    • 2023
  • The current study aimed to explore the suicidal behaviors and risk factors of completed suicides using psychological autopsy and use them as index variables to classify suicidal types. In addition, this study looked into the influential factors that affect each suicidal type. related to suicidal behaviors and suicidal risk factors by psychological autopsy. In addiction, the distinctions among the classes were analyzed. For this, psychological autopsies were conducted on the families and the close ones of 128 completed suicides. Then, the index variables were finally chosen for classifying suicidal types. The selected index variables for suicidal risk factors were mental disorders, suicide/self-harm, significant changes in physical appearance, marital conflict, adjustment and relationship issues at work/school, unemployment/layoff, jobless status and serious financial problems. The selected index variables for suicidal behaviors were expressing their suicidal attempts, writing suicidal notes, asking for help, the time/place/method of suicidal behavior, past suicidal/self-harm experience and the first person who witnessed the suicide. The Latent Class Analysis(LCA) and the 3-step method were used for classifying suicidal types. Then external variables(financial changes, cohabitation, existence of stressors, changes in stress level or relationships and family members with mental disorder/alchohol problems/ physical disorders, and work/school stisfaction) were applied for distinguishing classes. As a result, 5 classes(financial problems, adjustment problems, complex problems, psychiatric problems, and response to event[s]) were revealed on suicidal behaviors and 3 classes(residence- suicidal attempt- found by family, nonresidence- nonsuicidal attempt- found by acquaintances, residence- nonsuicidal attempt- found by family) were presented on suicidal risk factors. External variables such as gender, marital status, cohabitation, changes in relationships significantly differentiated among the 3 classes. Especially, class 3(residence- nonsuicidal attempt- found by family) tended to cohabit with others, were married, and had a significantly high level of interpersonal conflicts. When comparing the 5 classes of suicidal risk factors, auxiliary variables such as economic changes, cohabitation, stress, relationship changes, and family-related problems, and school/work satisfaction significantly differentiated the 5 classes. Especially class 3 (complex problems) experienced comparatively less family-related problems, but showed an aggravating level of personal stress. Suicial prevention strategies should be provided considering the characteristics of each class and the influential factors.

A Study on the Response Plan through the Analysis of North Korea's Drones Terrorism at Critical National Facilities - Focusing on Improvement of Laws and Systems - (국가중요시설에 대한 북한의 드론테러 위협 분석을 통한 대응방안 연구 - 법적·제도적 개선을 중심으로 -)

  • Choong soo Ha
    • Journal of the Society of Disaster Information
    • /
    • v.19 no.2
    • /
    • pp.395-410
    • /
    • 2023
  • Purpose: The purpose of this study was to analyze the current state of drone terrorism response at such critical national facilities and derive improvements, especially to identify problems in laws and systems to effectively utilize the anti-drone system and present directions for improvement. Method: A qualitative research method was used for this study by analyzing a variety of issues not discussed in existing research papers and policy documents through in-depth interviews with subject matter experts. In-depth interviews were conducted based on 12 semi-structured interviews by selecting 16 experts in the field of anti-drone and terrorism in Korea. The interview contents were recorded with the prior consent of the study participants, transcribed back to the Korean file, and problems and improvement measures were derived through coding. For this, the threats and types were analyzed based on the cases of drone terrorism occurring abroad and measures to establish anti-drone system were researched from the perspective of laws and systems by evaluating the possibility of drone terrorism in the Republic of Korea. Result: As a result of the study, improvements to some of the problems that need to be preceded in order to effectively respond to drone terrorism at critical national facilities in the Republic of Korea, have been identified. First, terminologies related to critical national facilities and drone terrorism should be clearly defined and reflected in the Integrated Defense Act and the Terrorism Prevention Act. Second, the current concept of protection of critical national facilities should evolve from the current ground-oriented protection to a three-dimensional protection concept that considers air threats and the Integrated Defense Act should reflect a plan to effectively install the anti-drone system that can materialize the concept. Third, a special law against flying over critical national facilities should be enacted. To this end, legislation should be enacted to expand designated facilities subject to flight restrictions while minimizing the range of no fly zone, but the law should be revised so that the two wings of "drone industry development" and "protection of critical national facilities" can develop in a balanced manner. Fourth, illegal flight response system and related systems should be improved and reestablished. For example, it is necessary to prepare a unified manual for general matters, but thorough preparation should be made by customizing it according to the characteristics of each facility, expanding professional manpower, and enhancing response training. Conclusion: The focus of this study is to present directions for policy and technology development to establish an anti-drone system that can effectively respond to drone terrorism and illegal drones at critical national facilities going forward.

The Accuracy Evaluation of Digital Elevation Models for Forest Areas Produced Under Different Filtering Conditions of Airborne LiDAR Raw Data (항공 LiDAR 원자료 필터링 조건에 따른 산림지역 수치표고모형 정확도 평가)

  • Cho, Seungwan;Choi, Hyung Tae;Park, Joowon
    • Journal of agriculture & life science
    • /
    • v.50 no.3
    • /
    • pp.1-11
    • /
    • 2016
  • With increasing interest, there have been studies on LiDAR(Light Detection And Ranging)-based DEM(Digital Elevation Model) to acquire three dimensional topographic information. For producing LiDAR DEM with better accuracy, Filtering process is crucial, where only surface reflected LiDAR points are left to construct DEM while non-surface reflected LiDAR points need to be removed from the raw LiDAR data. In particular, the changes of input values for filtering algorithm-constructing parameters are supposed to produce different products. Therefore, this study is aimed to contribute to better understanding the effects of the changes of the levels of GroundFilter Algrothm's Mean parameter(GFmn) embedded in FUSION software on the accuracy of the LiDAR DEM products, using LiDAR data collected for Hwacheon, Yangju, Gyeongsan and Jangheung watershed experimental area. The effect of GFmn level changes on the products' accuracy is estimated by measuring and comparing the residuals between the elevations at the same locations of a field and different GFmn level-produced LiDAR DEM sample points. In order to test whether there are any differences among the five GFmn levels; 1, 3, 5, 7 and 9, One-way ANOVA is conducted. In result of One-way ANOVA test, it is found that the change in GFmn level significantly affects the accuracy (F-value: 4.915, p<0.01). After finding significance of the GFmn level effect, Tukey HSD test is also conducted as a Post hoc test for grouping levels by the significant differences. In result, GFmn levels are divided into two subsets ('7, 5, 9, 3' vs. '1'). From the observation of the residuals of each individual level, it is possible to say that LiDAR DEM is generated most accurately when GFmn is given as 7. Through this study, the most desirable parameter value can be suggested to produce filtered LiDAR DEM data which can provide the most accurate elevation information.

Structural Evaluation Method to Determination Safe Working Load of Block Handling Lugs (블록 이동용 러그의 안전사용하중 결정에 관한 구조 평가법)

  • O-Hyun Kwon;Joo-Shin Park;Jung-Kwan Seo
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.4
    • /
    • pp.363-371
    • /
    • 2023
  • To construct a ship, blocks of various sizes must be moved and erected . In this process, lugs are used such that they match the block fastening method and various functions suitable for the characteristics of each shipyard facility. The sizes and shapes of the lugs vary depending on the weight and shape of the block structures. The structure is reinforced by welding the doubling pads to compensate for insufficient rigidity around the holes where the shackle is fastened. As for the method of designing lugs according to lifting loading conditions, a simple calculation based on the beam theory and structural analysis using numerical modeling are performed. In the case of the analytical method, a standardized evaluation method must be established because results may differ depending on the type of element and modeling method. The application of this ambiguous methodology may cause serious safety problems during the process of moving and turning-over blocks. In this study , the effects of various parameters are compared and analyzed through numerical structural analysis to determine the modeling conditions and evaluation method that can evaluate the actual structural response of the lug. The modeling technique that represents the plate part and weld bead around the lug hole provides the most realistic behavior results. The modeling results with the same conditions as those of the actual lug where only the weld bead is connected to the main body of the lug, showed a lower ulimated strength compared with the results obtained by applying the MPC load. The two-dimensional shell element is applied to reduce the modeling and analysis time, and a safety working load was verified to be predicted by reducing the thickness of the doubling pad by 85%. The results of the effects of various parameters reviewed in the study are expected to be used as good reference data for the lug design and safe working load prediction.

Physiological and Proteomic Responses of Barley Seedlings to Salt Stress (보리의 생육초기 염 스트레스에 따른 생리적 반응과 프로테옴 변화)

  • Kim, Dea-Wook;Yun, Seong-Kun;Park, Hyoung-Ho;Hwang, Jong-Jin;Han, Ok-Kyu;Park, Tae-Il;Jung, Gun-Ho;Lee, Jae-Eun;Kim, Sun-Lim;Chung, Young-Ho
    • Journal of the Korean Society of International Agriculture
    • /
    • v.23 no.5
    • /
    • pp.537-545
    • /
    • 2011
  • This study was conducted to obtain basic information on physiological and proteomic responses of barley seedlings to salt stress. Shoot dry weight decreased significantly as the level of soil salinity increased. Salt stress-induced decrease of relative shoot dry weight was lower in cv. "Sanglok" than in cv. "Sunwoo". Under the salt stress, SPAD value decreased, and the value was higher in cv. "Sanglok" than in cv. "Sunwoo". Sodium ion content in the leaves increased as NaCl concentration increased, and the content was higher in cv. "Sunwoo" than in cv. "Sanglok". The K+/Na+ ratio was higher in cv. "Sanglok" than in cv. "Sunwoo". Salt stress-induced alterations in protein expression of the leaves were detected by two dimensional electrophoresis, and 47 protein spots showing altered expression were selected. Among the selected protein spots, 17 protein spots were up-regulated and 28 spots down-regulated in cv. "Sanglok". In cv. "Sunwoo", 14 protein spots were up-regulated and 27 spots down-regulated. Out of 47 deferentially expressed protein spots, 18 protein spots were identified using mass spectrometry and NCBI protein database. Among the identified proteins, ten proteins are known to be involved in various stress responses, but the others are not directly involved in stress responses.

Assessment of Eutrophication Using Trophic State Index and Water Quality Characteristics of Saemangeum Lake (새만금호의 수질 특성 및 영양상태지수를 이용한 부영양화 평가)

  • Jong Gu Kim
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.6
    • /
    • pp.587-597
    • /
    • 2023
  • We evaluated the eutrophication of Saemangeum Lake, which causes abnormal growth of algae, using the Carlson index. Eutrophication characteristics of Saemangeum Lake were analyzed. For the study, water quality surveys were conducted at 7 stations in Saemangeum Lake every month in 2021. The concentration of Chl.a was slightly higher in the Mankyeong water system in winter, and slightly higher in the Dongjin water system in spring and summer, but overall, except for some periods, the concentration was similar to or lower than the lake water quality environmental standard of class 3. COD showed water quality similar to or above the lake quality environmental standard of grade 4 in both the Mankyeong and Dongjin water systems in the summer and Autumn. TOC concentrations were within lake water quality standard 3 at all sites. Total phosphorus concentrations exceeded the lake water quality standard of Class 4 and were higher in January and August after rainfall. In the correlation analysis between water quality factors, the correlation of organic matter, total phosphorus, and total nitrogen to salinity was relatively high. This reflected the water quality characteristics of freshwater, brackish water, and seawater areas due to seawater inflow through the drainage gate and freshwater inflow through upstream rivers. According to the characteristics of eutrophication fluctuations in Saemangeum Lake by trophic state index, the indices of Chl.a, SD, and TN showed water quality in the early stage of eutrophication, while the TP index showed a severe eutrophication state. The magnitude of the eutrophication index among water quality components was TSI(TP) > TSI(TN) > TSI(SD) > TSI(CHL) in all water systems. Quadrant analysis of the deviation of TSI(CHL) from TSI(TP) and TSI(SD) on a two-dimensional plane showed that there was no limiting effect of total phosphorus on algal growth in all water systems. In addition, the factors af ecting light attenuation appeared to be dominated by small particulate matter from outside sources.

Exploring Mask Appeal: Vertical vs. Horizontal Fold Flat Masks Using Eye-Tracking (마스크 매력 탐구: 아이트래킹을 활용한 수직 접이형 대 수평 접이형 마스크 비교 분석)

  • Junsik Lee;Nan-Hee Jeong;Ji-Chan Yun;Do-Hyung Park;Se-Bum Park
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.4
    • /
    • pp.271-286
    • /
    • 2023
  • The global COVID-19 pandemic has transformed face masks from situational accessories to indispensable items in daily life, prompting a shift in public perception and behavior. While the relaxation of mandatory mask-wearing regulations is underway, a significant number of individuals continue to embrace face masks, turning them into a form of personal expression and identity. This phenomenon has given rise to the Fashion Mask industry, characterized by unique designs and colors, experiencing rapid growth in the market. However, existing research on masks is predominantly focused on their efficacy in preventing infection or exploring attitudes during the pandemic, leaving a gap in understanding consumer preferences for mask design. We address this gap by investigating consumer perceptions and preferences for two prevalent mask designs-horizontal fold flat masks and vertical fold flat masks. Through a comprehensive approach involving surveys and eye-tracking experiments, we aim to unravel the subtle differences in how consumers perceive these designs. Our research questions focus on determining which design is more appealing and exploring the reasons behind any observed differences. The study's findings reveal a clear preference for vertical fold flat masks, which are not only preferred but also perceived as unique, sophisticated, three-dimensional, and lively. The eye-tracking analysis provides insights into the visual attention patterns associated with mask designs, highlighting the pivotal role of the fold line in influencing these patterns. This research contributes to the evolving understanding of masks as a fashion statement and provides valuable insights for manufacturers and marketers in the Fashion Mask industry. The results have implications beyond the pandemic, emphasizing the importance of design elements in sustaining consumer interest in face masks.