• Title/Summary/Keyword: Two layer

Search Result 6,189, Processing Time 0.032 seconds

G-Networks Based Two Layer Stochastic Modeling of Gene Regulatory Networks with Post-Translational Processes

  • Kim, Ha-Seong;Gelenbe, Erol
    • Interdisciplinary Bio Central
    • /
    • v.3 no.2
    • /
    • pp.8.1-8.6
    • /
    • 2011
  • Background: Thanks to the development of the mathematical/statistical reverse engineering and the high-throughput measuring biotechnology, lots of biologically meaningful genegene interaction networks have been revealed. Steady-state analysis of these systems provides an important clue to understand and to predict the systematic behaviours of the biological system. However, modeling such a complex and large-scale system is one of the challenging difficulties in systems biology. Results: We introduce a new stochastic modeling approach that can describe gene regulatory mechanisms by dividing two (DNA and protein) layers. Simple queuing system is employed to explain the DNA layer and the protein layer is modeled using G-networks which enable us to account for the post-translational protein interactions. Our method is applied to a transcription repression system and an active protein degradation system. The steady-state results suggest that the active protein degradation system is more sensitive but the transcription repression system might be more reliable than the transcription repression system. Conclusions: Our two layer stochastic model successfully describes the long-run behaviour of gene regulatory networks which consist of various mRNA/protein processes. The analytic solution of the G-networks enables us to extend our model to a large-scale system. A more reliable modeling approach could be achieved by cooperating with a real experimental study in synthetic biology.

Effect of the Hydraulic Boundary Layer on the Convective Heat Transfer in Porous Media (유동 경계층이 다공성물질내 대류 열전달에 미치는 영향)

  • Jin, Jae-Seek;Lee, Dae-Young;Kang, Byung-Ha
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.8
    • /
    • pp.1119-1127
    • /
    • 2000
  • Convective heat transfer in a channel filled with porous media has been analyzed in this paper. The two-equation model is applied for the heat transfer analysis with the velocity profile, considering both the inertia and viscous effects. Based on a theoretical solution, the effect of the velocity profile on the convective heat transfer is investigated in detail. The Nusselt number is obtained in terms of the relevant physical parameters, such as the Biot number for the internal heat exchange, the ratio of effective conductivities between the fluid and solid phases, and hydraulic boundary layer thickness. The results indicate that the influence of the velocity profile is characterized within two regimes according to the two parameters, the Biot number and the conductivity ratio between the phases. The decrease in the heat transfer due to the hydraulic boundary layer thickness is 15% at most within a practical range of the pertinent parameters.

Impact of Building Blocks on Inundation Level in Urban Drainage Area (지표 건물이 도시유역의 침수특성에 미치는 영향)

  • Lee, Jeong-Young;Ha, Sung-Ryong
    • Journal of Environmental Impact Assessment
    • /
    • v.22 no.1
    • /
    • pp.99-107
    • /
    • 2013
  • This study is an impact assessment of building blocks on urban inundation depth and area. LiDAR data is used to generate two original data set in terms of DEM with $5{\times}5$ meter and building block elevation layer of the study drainage area in Cheongju and then the building block elevation layer is modified again to the mesh data with same size to DEM. Two-dimensional inundation analysis is carried out by applying 2D SWMM model. The inundation depth calculated by using the building block elevation layer shows higher reliability than the DEM. This is resulted from the building block interference to surface flow. In addition, the maximum flooded area by DEM is two times wider than the area by building block layer. In the case of the surface velocity, the difference of velocity is negligible in either DEM or building block case in the low building impact zone. However, If the impact of building on the surface velocity was increase, the gap of velocity was significant.

A Method for Evaluating Electric Shock Hazards Based on Human Body Current (인체전류를 기반으로 하는 감전의 위험성 평가방법)

  • Lee, Bok-Hee;Yoo, Yang-Woo;Choi, Jong-Hyuk
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.6
    • /
    • pp.108-114
    • /
    • 2011
  • In order to mitigate the possible hazards from electric shock due to the touch and step voltages, the high resistivity material such as gravel is often spread on the earth's surface in substations. When the grounding electrode is installed in two-layer soil structures, the surface layer soil resistivity is different with the resistivity of the soil contacted with the grounding electrodes. The design of large-sized grounding systems is fundamentally based on assuring safety from dangerous voltages within a grounding grid area. The performance of the grounding system is evaluated by tolerable touch and step voltages. Since the floor surface conditions near equipment to be grounded are changed after a grounding system has been constructed, it may be difficult to determine the tolerable touch and step voltage criteria. In this paper, to propose an accurate and convenient method for evaluating the protective performance of grounding systems, the propriety of the method for evaluating the current flowing through the human body around on a counterpoise buried in two-layer soils is presented. As a result, it is reasonable that the grounding system performance would be evaluated by measuring and analyzing the current flowing through the human body based on dangerous voltages such as the touch or step voltages and the contact resistance between the ground surface and feet.

Discrete-Layer Model for Prediction of Free Edge Stresses in Laminated Composite Plates

  • Ahn, Jae-Seok;Woo, Kwang-Sung
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.23 no.6
    • /
    • pp.615-626
    • /
    • 2010
  • The discrete-layer model is proposed to analyze the edge-effect problem of laminates under extension and flexure. Based on three-dimensional elasticity theory, the displacement fields of each layer in a laminate have been treated discretely in terms of three displacement components across the thickness. The displacement fields at bottom and top surfaces within a layer are approximated by two-dimensional shape functions. Then two surfaces are connected by one-dimensional high order shape functions. Thus the p-convergent refinement on approximated one- and two-dimensional shape functions can be implemented independently of each other. The quality of present model is mostly determined by polynomial degrees of shape functions for given displacement fields. For nodal modes with physical meaning, the linear Lagrangian polynomials are considered. Additional modes without physical meaning, which are created by increasing nodeless degrees of shape functions, are derived from integrals of Legendre polynomials which have an orthogonality property. Also, it is assumed that mapping functions are linear in the light of shape of laminated plates. The results obtained by this proposed model are compared with those available in literatures. Especially, three-dimensional out-of-plane stresses in the interior and near the free edges are evaluated and convergence performance of the present model is established with the stress results.

A load-bearing structural element with energy dissipation capability under harmonic excitation

  • Pontecorvo, Michael E.;Barbarino, Silvestro;Gandhi, Farhan S.;Bland, Scott;Snyder, Robert;Kudva, Jay;White, Edward V.
    • Advances in aircraft and spacecraft science
    • /
    • v.2 no.3
    • /
    • pp.345-365
    • /
    • 2015
  • This paper focuses on the design, fabrication, testing and analysis of a novel load-bearing element with energy dissipation capability. A single element comprises two von-Mises trusses (VMTs), which are sandwiched between two plates and connected to dashpots that stroke as the VMTs cycle between stable equilibrium states. The elements can be assembled in-plane to form a large plate-like structure or stacked with different properties in each layer for improved load-adaptability. Also introduced in the elements are pre-loaded springs (PLSs) that provide high initial stiffness and allow the element to carry a static load even when the VMTs cannot under harmonic disturbance input. Simulations of the system behavior using the Simscape environment show good overall correlation with test data. Good energy dissipation capability is observed over a frequency range from 0.1 Hz to 2 Hz. The test and simulation results show that a two layer prototype, having one soft VMT layer and one stiff VMT layer, can provide good energy dissipation over a decade of variation in harmonic load amplitude, while retaining the ability to carry static load due to the PLSs. The paper discusses how system design parameter changes affect the static load capability and the hysteresis behavior.

Secure Transmission for Two-Way Vehicle-to-Vehicle Networks with an Untrusted Relay

  • Gao, Zhenzhen
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.4 no.6
    • /
    • pp.443-449
    • /
    • 2015
  • This paper considers the physical layer security problem for a two-way vehicle-to-vehicle network, where the two source vehicles can only exchange information through an untrusted relay vehicle. The relay vehicle helps the two-way transmission but also acts as a potential eavesdropper. Each vehicle has a random velocity. By exploiting the random carrier frequency offsets (CFOs) caused by random motions, a secure double-differential two-way relay scheme is proposed. While achieving successful two-way transmission for the source vehicles, the proposed scheme guarantees a high decoding error floor at the untrusted relay vehicle. Average symbol error rate (SER) performance for the source vehicles and the untrusted relay vehicle is analyzed. Simulation results are provided to verify the proposed scheme.

Shrinkage Cracking Resistance of a Very High Performance Concrete for 2LCP in Accordance with the Polymer Powder Mixing Rate (폴리머 분말 혼입율에 따른 2층 포장용 고성능 콘크리트의 자기수축 특성)

  • Yun, ByeongRim;Yun, Kyongku;Lee, KyeRe;Han, SeungYeon
    • International Journal of Highway Engineering
    • /
    • v.20 no.2
    • /
    • pp.19-25
    • /
    • 2018
  • PURPOSES : This purpose of this study is to analyze the effect to autogenous shrinkage of the top-layer material of a two-lift concrete pavement mixing both silica fume and polymer powder. METHODS : The bottom-layer of a two-lift concrete pavement was paved with original portland cement (OPC) with a 20~23 cm thickness. Additionally, the top-layer which is directly exposed to the environment and vehicles was paved with a high-performance concrete (HPC) with a 7~10 cm thickness. These types of pavements can achieve a long service life by reducing joint damage and increasing the abrasion and scaling resistance. In order to integrate the different bottom and top layer materials, autogenous shrinkage tests were performed in this study according to the mixing ratio of silica fume and polymer powder, which are the admixture of the top-layer material. RESULTS : Autogenous shrinkage decreased when polymer powder was used in the mix. Contrary to this, autogenous shrinkage tended to rise with increasing silica fume content. However, the effects were not significant when small amounts of polymer powder were used (3% and 11%). CONCLUSIONS : The durability and compressive strength increase when silica fume is used in the mix. The flexural strength considerably increases and autogenous shrinkage of concrete decreases when polymer powder is used in the mix. As seen from above, the proper use of these materials improves not only durability, but also autogenous shrinkage, leading to better shrinkage crack control in the concrete.

Study on Validity of 1-D Spherical Model on Aqua-plasma Power Estimation With Electrode Structure

  • Yun, Seong-Yeong;Jang, Yun-Chang;Kim, Gon-Ho
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.74-74
    • /
    • 2010
  • The aqua-plasma is the non-thermal plasma in electrical conductive electrolyte by generates the vapor film layer on the immersed metal electrode surface. This plasma can generate the hydroxyl radical by dissociate the water molecule with the plasma electron. To develop the plasma discharge device for high efficiency in the hydroxyl radical generation, proper model for estimation of plasma power is necessary. In this work, the 1-D spherical model was developed, considering temperature dependence material constants. The relation between the plasma power and hydroxyl generation was also studied by the comparison between the optical emission intensity from the hydroxyl radical using monochromator and estimated plasma power. First, the thickness of vapor layer thickness was estimated using the Navier-Stokes fluid equation in order to calculate the discharge E-field inside vapor layer. Using the E-field magnitude and power balance on the plasma generation, it was possible to estimate the plasma power. The plasma power was assumed to uniformly fill the vapor layer and the temperature of vapor layer was fixed in the boiling temperature of electrolyte, 375K. In the experiment, the aqua-plasma was discharged in the saline by applied the voltage on the bipolar electrode. The range of applied voltage was 234 to 280V-rms in the frequency of 380 kHz. Two type electrodes were produced with two ${\Phi}0.2$ tungsten. The plasma power was estimated from the V-I signal from the two high voltage probes and current probe. The estimated plasma power agreed with the profile of emission intensity when the plasma discharged between the metal electrode and vapor layer surface. However, when the plasma discharged between the metal electrodes, the increasing rate of emission intensity was lower than the increase of plasma power. It implies that the surface reaction is more sufficient rather than the volume reaction in the radical generation, due to the high density of water molecule in the liquid.

  • PDF

Synthesis of Organic EL Materials with Cyano Group and Evaluation of Emission Characteristics in Organic EL Devices (시안기를 가진 유기 EL 물질들의 합성 및 유기 EL 소자에서의 발광특성평가)

  • Kim, Dong Uk
    • Journal of the Korean Chemical Society
    • /
    • v.43 no.3
    • /
    • pp.315-320
    • /
    • 1999
  • Novel electroluminescent materials, polymer material, PU-BCN and low molar mass material, D-BCN with the same chromophores were designed and synthesized. A molecular structure of chromophore was composed of bisstyrylbenzene derivative with cyano groups as electron injection and transport and phenylamine groups as hole injection and transport. Device structures with PU-BCN and D-BCN as an emission layer were fa-bricated, which were a single-layer device(SL), Indium-tin oxide(ITO)/emission layer/MgAg, and two kinds of double-layer devices which were composed of ITO/emission layer/oxadiazole derivative/MgAg as a DL-E device and ITO/triphenylamine derivative/emission layer/MgAg as a DL-H device. The two emission materials, PU-BCN and D-BCN with the same emission-chromophore were evaluated as having excellent performance of charge injection and transport and revealed almost the same emission characteristics in high current density. EL emission maximum peaks of two material were detected at about 640 nm wavelength of red emission region.

  • PDF