• Title/Summary/Keyword: Two Cylinders

Search Result 403, Processing Time 0.025 seconds

A Study on Characteristics of the Flow Around Two Square Cylinders in a Tandem Arrangement Using Particle Image Velocimetry (PIV를 이용한 직렬배열에서의 두 정사각기둥 주위의 유동특성에 관한 연구)

  • Kim, Dong-Keon;Lee, Jong-Min;Seong, Seung-Hak;Yoon, Soon-Hyun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.11 s.242
    • /
    • pp.1199-1208
    • /
    • 2005
  • The flow fields including velocities, turbulence intensities, Reynolds shear stress and turbulent kinetic energy were investigated using particle image velocimetry(PIV) to study the flow characteristics around two square cylinders in a tandem arrangement. The experiments were carried out in the range of the spacing from 1.0 to 4.0 widths of cylinder, Reynolds number of 5.3$\times$10$^{3}$ and 1.6$\times$10$^{4}$ respectively. Discontinuous jumping at the drag coefficient variation was found for two cylinders simultaneously when the spacing between two cylinders is varied. This phenomenon is attributed to a sudden change of the flow pattern which depends on the reattachment of the shear layer separated from the upstream cylinder. Near such a critical spacing, the changes of the flow fields as well as the effect of Reynolds number were studied in detail.

A Study on the Synchronous Control of Two Motor Cylinders with Skew Disturbance (비대칭외란을 고려한 2축 전동실린더의 동기제어에 관한 연구)

  • Byun, J.H.
    • Journal of Power System Engineering
    • /
    • v.13 no.6
    • /
    • pp.129-136
    • /
    • 2009
  • A motor cylinder is widely used as an apparatus for transportation of a small scale load. It is, however, difficult for only one motor cylinder to transfer a large scale load such as a weir. The large scale load is transferred by two motor cylinders which are mounted on right and left of load itself. In this case, the displacement difference generated between two motor cylinders, namely, the synchronous error has a bad influence on the transportation. In this study, a synchronous control system is designed to restrain synchronous error caused by skew disturbance. The control system is composed of two disturbance observers and one synchronous controller. Each disturbance observer is designed to restrain the skew disturbance. And the synchronous controller is designed to achieve stable and accurate synchronization. Finally, the simulation results show that the designed control system is effective for the skew disturbance which lead to synchronous error.

  • PDF

Hydrodynamic Interference between Two Circular Cylinders in Tandem and Side by Side Arrangements (직렬 및 병렬배열에서 2원주의 유체역학적 간섭)

  • 노기덕;박지태;강호근
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.27 no.1
    • /
    • pp.49-56
    • /
    • 2003
  • The hydrodynamic interference between two circular cylinders in tandem and side by side arrangements was investigated by measuring of lift and drag on each cylinder. The time variations of interference lift and drag coefficients in each arrangement were observed at center-to-center pitch ratios of P/D=1.25 and 2.5 and Reynolds number of $Re=1.5\times10^4$. Average interference lift and drag coefficients were also observed at pitch ratios from P/D=1.25 to 2.5 and Reynolds number from $Re=1.5\times10^4$ to $1.5\times10^4$. The hydrodynamic interference between two circular cylinders differed with the shape of the arrangement and the pitch ratio, but the characteristics were revealed by measuring of lift and drag on each cylinder.

Position and Force Simultaneous Trajectory Tracking Control with a Pneumatic Cylinder Driving System (공기압 실린더를 이용한 힘과 위치 동시 궤적 추적 제어)

  • Cho, M.S.;Jang, J.S.
    • Journal of Power System Engineering
    • /
    • v.7 no.3
    • /
    • pp.40-47
    • /
    • 2003
  • In this study, position and force simultaneous trajectory tracking control apparatus with pneumatic cylinder driving system is proposed. The pneumatic cylinder driving system that consists of two pneumatic cylinders constrained in series and two proportional flow control valves offers a considerable advantage as to non-interaction of the actuators because of the low stiffness of the pneumatic actuators. The controller applied to the driving system is composed of a non-interaction controller to compensate for interaction of two cylinders and a disturbance observer to reduce the effect of model discrepancy of the driving system in the low frequency range that cannot be suppressed by the non-interaction controller. The experimental results with the proposed control apparatus show that the interacting effects of two cylinders are eliminated remarkably and the proposed control apparatus tracks the given position and force trajectory accurately.

  • PDF

A Study on the Flow=Induced Vibration of Tube Array in Uniform Crossflow(II) On the Flow-Induced Vibration of Two Interfering Circular Cylinders in Tandem (균일 유동장내 튜브배열의 유동관련 진동에 관한 연구( II ) 직렬로 배열된 두 원주의 유동여기 진동에 관하여)

  • 이기백;김봉환;양장식
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.6
    • /
    • pp.1518-1528
    • /
    • 1993
  • The wake-induced vibration and proximity-induced vibration of two interfering circular cylinders in tandem are investigated experimentally, using an elastically supported cylinder and a fixed cylinder in uniform crossflow. Dynamic responses and flow periodicity in wake are measured to investigate the effect of system parameters on aerodynamic instability. The parameters include the free stream wind velocity and the position of two interfering circular cylinders. The oscillating behavior of the amplitude of the elastically supported cylinder is changed by varying the position, the relative gap spacing between two interfering circular cylinders and the reduced velocities. In small gap spacing between the elastically supported cylinder located to upstream and the circular cylinder fixed to downstream, the fluidelastic instability is founded. The vibration amplitude decreases notably as gap spacing between two interfering circular cylinders becomes large. The dynamic behavior at g/D-4.0 is similar to that of the single circular cylinder.

Thermoelastic static and vibrational behaviors of nanocomposite thick cylinders reinforced with graphene

  • Moradi-Dastjerdi, Rasool;Behdinan, Kamran
    • Steel and Composite Structures
    • /
    • v.31 no.5
    • /
    • pp.529-539
    • /
    • 2019
  • Current paper deals with thermoelastic static and free vibrational behaviors of axisymmetric thick cylinders reinforced with functionally graded (FG) randomly oriented graphene subjected to internal pressure and thermal gradient loads. The heat transfer and mechanical analyses of randomly oriented graphene-reinforced nanocomposite (GRNC) cylinders are facilitated by developing a weak form mesh-free method based on moving least squares (MLS) shape functions. Furthermore, in order to estimate the material properties of GRNC with temperature dependent components, a modified Halpin-Tsai model incorporated with two efficiency parameters is utilized. It is assumed that the distributions of graphene nano-sheets are uniform and FG along the radial direction of nanocomposite cylinders. By comparing with the exact result, the accuracy of the developed method is verified. Also, the convergence of the method is successfully confirmed. Then we investigated the effects of graphene distribution and volume fraction as well as thermo-mechanical boundary conditions on the temperature distribution, static response and natural frequency of the considered FG-GRNC thick cylinders. The results disclosed that graphene distribution has significant effects on the temperature and hoop stress distributions of FG-GRNC cylinders. However, the volume fraction of graphene has stronger effect on the natural frequencies of the considered thick cylinders than its distribution.

Ultimate Strength Analysis of Ring-stiffened Cylinders Using Commercial Softwares(II) (상용소프트웨어를 이용한 원환보강 원통의 최종강도 해석(II))

  • 박치모;이승훈
    • Journal of Ocean Engineering and Technology
    • /
    • v.16 no.1
    • /
    • pp.36-40
    • /
    • 2002
  • Despite the frequent use of ring-stiffened cylinders as a submarine pressure hull or members of various types of offshore structure, their ultimate strength analysis methods have not been well established because of their complex structural characteristics. This paper has established the method how to use commercial softwares based on the finite element method to implement the ultimate strength analysis of ring-stiffened cylinders covering both types of initial imperfection, i.e. initial deformation and initial stress by combining two separately offered functions of common commercial finite element softwares, linear elastic buckling analysis and nonlinear stress analysis. Developed method was applied to one of the world-widely used commercial softwares. ABAQUS for the analysis of ring stiffened cylinders. This paper ends with some useful information about the imperfection sensitivity of ultimate strength ring stiffened cylinders.

Control Characteristics Improvement of Single Rod Hydraulic Cylinder Subjected to Varying Load (가변하중을 받는 유압실린더의 제어특성개선)

  • Yum, Man-Oh
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.2 no.4
    • /
    • pp.46-52
    • /
    • 2003
  • For position control of electro-hydraulic servo system, single rod cylinders and double rod cylinders are used. Single rod cylinders have simple structure for manufacturing but different volume ratio of two sides induce to non-linearity in process of then mathematical modeling. So only with conventional PID control method it is difficult to control single rod cylinders precisely. For mole precise position control of single rod cylinders, a controller which is inserted a velocity feedback PID controller and MRAC controller are proposed. With experiment control performances of three control methods are compared. In case of experiment, for external varying load to the system, a hydraulic cylinder and a pressure control valve are used. In conclusion a MRAC is considered a suitable control method for external varying load.

  • PDF

Secondary Steady Flows Due to the Small-Amplitude In-Phase Oscillation of Multi-Cylinders (다수의 주상체들의 저진폭 동위상 진동에 의한 2차 정상유동 해석)

  • Kim, Seong-Gyun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.2
    • /
    • pp.649-658
    • /
    • 1996
  • Small-amplitude harmonic oscillations of multi-cylinders are considered both experimentally and theoretically. For the theoretical model, the flow regime is separated into inner and outer regions. In the inner region, the flow is governed by the generalized Stokes boundary layer equation. In the outer region, the full Navier-Stokes equation for the steady streaming flow is solved numerically by using ADI scheme and FVM coupled with the boundary integral method. Flow visualization experiments are conducted by using the Laser Sheet Image Technique. The case of two circular cylinders and square cylinders with variable distances are chosen as a typical example. Although experimental results are based on the flow in the finite domain, both experimental and numerical results agree well qualitatively. As the separation of cylinders is increased, a numerical result shows the asymptotic convergence to a single cylinder case.

Ultimate Strength Analysis of Ring-stiffened Cylinders Using Commercial Softwares(II) (상용소프트웨어를 이용한 원환보강 원통의 최종강도 해석(II))

  • 박치모;이승훈
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.114-118
    • /
    • 2001
  • Despite the frequent use of ring-stiffened cylinders as a submarine pressure hull or members of various types of offshore sutructures, their ultimate strength analysis methods have not been well established because of their complex structural characteristics. This paper has established the method how to use commercial softwares based on the finite element method to implement the ultimate strength analysis of ring-stiffened cylinders covering both types of initial imperfections, I. e. initial deformation and initial stress by combining two separately offered functions of common commercial finite element softwares, linear elastic buckling analysis and nonlinear stress analysis. Developed method was applied to one of the world-widely used commercial softwares, ABAQUS for the analysis of ring-stiffened cylinders. This paper ends with some useful information about the imperfection sensitivity of ultimate strength of ring-stiffened cylinders.

  • PDF