• Title/Summary/Keyword: Twitter sentiment analysis

Search Result 93, Processing Time 0.026 seconds

Detection of Complaints of Non-Face-to-Face Work before and during COVID-19 by Using Topic Modeling and Sentiment Analysis (동적 토픽 모델링과 감성 분석을 이용한 COVID-19 구간별 비대면 근무 부정요인 검출에 관한 연구)

  • Lee, Sun Min;Chun, Se Jin;Park, Sang Un;Lee, Tae Wook;Kim, Woo Ju
    • The Journal of Information Systems
    • /
    • v.30 no.4
    • /
    • pp.277-301
    • /
    • 2021
  • Purpose The purpose of this study is to analyze the sentiment responses of the general public to non-face-to-face work using text mining methodology. As the number of non-face-to-face complaints is increasing over time, it is difficult to review and analyze in traditional methods such as surveys, and there is a limit to reflect real-time issues. Approach This study has proposed a method of the research model, first by collecting and cleansing the data related to non-face-to-face work among tweets posted on Twitter. Second, topics and keywords are extracted from tweets using LDA(Latent Dirichlet Allocation), a topic modeling technique, and changes for each section are analyzed through DTM(Dynamic Topic Modeling). Third, the complaints of non-face-to-face work are analyzed through the classification of positive and negative polarity in the COVID-19 section. Findings As a result of analyzing 1.54 million tweets related to non-face-to-face work, the number of IDs using non-face-to-face work-related words increased 7.2 times and the number of tweets increased 4.8 times after COVID-19. The top frequently used words related to non-face-to-face work appeared in the order of remote jobs, cybersecurity, technical jobs, productivity, and software. The words that have increased after the COVID-19 were concerned about lockdown and dismissal, and business transformation and also mentioned as to secure business continuity and virtual workplace. New Normal was newly mentioned as a new standard. Negative opinions found to be increased in the early stages of COVID-19 from 34% to 43%, and then stabilized again to 36% through non-face-to-face work sentiment analysis. The complaints were, policies such as strengthening cybersecurity, activating communication to improve work productivity, and diversifying work spaces.

Study on Principal Sentiment Analysis of Social Data (소셜 데이터의 주된 감성분석에 대한 연구)

  • Jang, Phil-Sik
    • Journal of the Korea Society of Computer and Information
    • /
    • v.19 no.12
    • /
    • pp.49-56
    • /
    • 2014
  • In this paper, we propose a method for identifying hidden principal sentiments among large scale texts from documents, social data, internet and blogs by analyzing standard language, slangs, argots, abbreviations and emoticons in those words. The IRLBA(Implicitly Restarted Lanczos Bidiagonalization Algorithm) is used for principal component analysis with large scale sparse matrix. The proposed system consists of data acquisition, message analysis, sentiment evaluation, sentiment analysis and integration and result visualization modules. The suggested approaches would help to improve the accuracy and expand the application scope of sentiment analysis in social data.

Sentiment Analysis for Public Opinion in the Social Network Service (SNS 기반 여론 감성 분석)

  • HA, Sang Hyun;ROH, Tae Hyup
    • The Journal of the Convergence on Culture Technology
    • /
    • v.6 no.1
    • /
    • pp.111-120
    • /
    • 2020
  • As an application of big data and artificial intelligence techniques, this study proposes an atypical language-based sentimental opinion poll methodology, unlike conventional opinion poll methodology. An alternative method for the sentimental classification model based on existing statistical analysis was to collect real-time Twitter data related to parliamentary elections and perform empirical analyses on the Polarity and Intensity of public opinion using attribute-based sensitivity analysis. In order to classify the polarity of words used on individual SNS, the polarity of the new Twitter data was estimated using the learned Lasso and Ridge regression models while extracting independent variables that greatly affect the polarity variables. A social network analysis of the relationships of people with friends on SNS suggested a way to identify peer group sensitivity. Based on what voters expressed on social media, political opinion sensitivity analysis was used to predict party approval rating and measure the accuracy of the predictive model polarity analysis, confirming the applicability of the sensitivity analysis methodology in the political field.

Trend Analysis of FinTech and Digital Financial Services using Text Mining (텍스트마이닝을 활용한 핀테크 및 디지털 금융 서비스 트렌드 분석)

  • Kim, Do-Hee;Kim, Min-Jeong
    • Journal of Digital Convergence
    • /
    • v.20 no.3
    • /
    • pp.131-143
    • /
    • 2022
  • Focusing on FinTech keywords, this study is analyzing newspaper articles and Twitter data by using text mining methodology in order to understand trends in the industry of domestic digital financial service. In the growth of FinTech lifecycle, the frequency analysis has been performed by four important points: Mobile Payment Service, Internet Primary Bank, Data 3 Act, MyData Businesses. Utilizing frequency analysis, which combines the keywords 'China', 'USA', and 'Future' with the 'FinTech', has been predicting the FinTech industry regarding of the current and future position. Next, sentiment analysis was conducted on Twitter to quantify consumers' expectations and concerns about FinTech services. Therefore, this study is able to share meaningful perspective in that it presented strategic directions that the government and companies can use to understanding future FinTech market by combining frequency analysis and sentiment analysis.

A Comparative Study between Stock Price Prediction Models Using Sentiment Analysis and Machine Learning Based on SNS and News Articles (SNS와 뉴스기사의 감성분석과 기계학습을 이용한 주가예측 모형 비교 연구)

  • Kim, Dongyoung;Park, Jeawon;Choi, Jaehyun
    • Journal of Information Technology Services
    • /
    • v.13 no.3
    • /
    • pp.221-233
    • /
    • 2014
  • Because people's interest of the stock market has been increased with the development of economy, a lot of studies have been going to predict fluctuation of stock prices. Latterly many studies have been made using scientific and technological method among the various forecasting method, and also data using for study are becoming diverse. So, in this paper we propose stock prices prediction models using sentiment analysis and machine learning based on news articles and SNS data to improve the accuracy of prediction of stock prices. Stock prices prediction models that we propose are generated through the four-step process that contain data collection, sentiment dictionary construction, sentiment analysis, and machine learning. The data have been collected to target newspapers related to economy in the case of news article and to target twitter in the case of SNS data. Sentiment dictionary was built using news articles among the collected data, and we utilize it to process sentiment analysis. In machine learning phase, we generate prediction models using various techniques of classification and the data that was made through sentiment analysis. After generating prediction models, we conducted 10-fold cross-validation to measure the performance of they. The experimental result showed that accuracy is over 80% in a number of ways and F1 score is closer to 0.8. The result can be seen as significantly enhanced result compared with conventional researches utilizing opinion mining or data mining techniques.

Insights Discovery through Hidden Sentiment in Big Data: Evidence from Saudi Arabia's Financial Sector

  • PARK, Young-Eun;JAVED, Yasir
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.7 no.6
    • /
    • pp.457-464
    • /
    • 2020
  • This study aims to recognize customers' real sentiment and then discover the data-driven insights for strategic decision-making in the financial sector of Saudi Arabia. The data was collected from the social media (Facebook and Twitter) from start till October 2018 in financial companies (NCB, Al Rajhi, and Bupa) selected in the Kingdom of Saudi Arabia according to criteria. Then, it was analyzed using a sentiment analysis, one of data mining techniques. All three companies have similar likes and followers as they serve customers as B2B and B2C companies. In addition, for Al Rajhi no negative sentiment was detected in English posts, while it can be seen that Internet penetration of both banks are higher than BUPA, rarely mentioned in few hours. This study helps to predict the overall popularity as well as the perception or real mood of people by identifying the positive and negative feelings or emotions behind customers' social media posts or messages. This research presents meaningful insights in data-driven approaches using a specific data mining technique as a tool for corporate decision-making and forecasting. Understanding what the key issues are from customers' perspective, it becomes possible to develop a better data-based global strategies to create a sustainable competitive advantage.

Constructing an Evaluation Set for Korean Sentiment Analysis Systems Incorporating the Category and the Strength of Sentiment (감성 강도를 고려한 감성 분석 평가집합 구축)

  • Kim, Do-Yeon;Wu, Yong;Park, Hyuk-Ro
    • The Journal of the Korea Contents Association
    • /
    • v.12 no.11
    • /
    • pp.30-38
    • /
    • 2012
  • Sentiment analysis is concerned with extracting and analyzing different kinds of user sentiment expressed in a variety of social media such as blog and twitter. Although sentiment analysis techniques are actively studied for these days, evaluation sets are not developed yet for Korean sentiment analysis. In this paper, we constructed an evaluation set for Korean sentiment analysis. To evaluate sentiment analysis systems more throughly, each sentence in our evaluation set is tagged with the polarity of the sentiment as well as the category and the strength of the sentiment. We divide kinds of sentiment into 7 positive categories and 15 negative categories. Each category is given the strength of the sentiment from 1 to 3. Our evaluation set consists of 3,270 sentences extracted from various social media. For each sentence, 5 human taggers assigned the category and the strength of the sentiment expressed in the sentence. The ratio of inter-taggers agreement was 93% in the polarity, 70% in the category, 58% in the strength of sentiment. The ratio of inter-taggers agreement our evaluation set is a bit higher than other evaluation sets developed for German and Spanish. This result shows our evaluation set can be used as a reliable resource for the evaluation of sentiment analysis systems.

Slangs and Short forms of Malay Twitter Sentiment Analysis using Supervised Machine Learning

  • Yin, Cheng Jet;Ayop, Zakiah;Anawar, Syarulnaziah;Othman, Nur Fadzilah;Zainudin, Norulzahrah Mohd
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.11
    • /
    • pp.294-300
    • /
    • 2021
  • The current society relies upon social media on an everyday basis, which contributes to finding which of the following supervised machine learning algorithms used in sentiment analysis have higher accuracy in detecting Malay internet slang and short forms which can be offensive to a person. This paper is to determine which of the algorithms chosen in supervised machine learning with higher accuracy in detecting internet slang and short forms. To analyze the results of the supervised machine learning classifiers, we have chosen two types of datasets, one is political topic-based, and another same set but is mixed with 50 tweets per targeted keyword. The datasets are then manually labelled positive and negative, before separating the 275 tweets into training and testing sets. Naïve Bayes and Random Forest classifiers are then analyzed and evaluated from their performances. Our experiment results show that Random Forest is a better classifier compared to Naïve Bayes.

Twitter Sentiment Analysis for Natural Language Processing (자연어 처리를 위한 트위터 감정 분석)

  • Li, Ang;Joe, Inwhee
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2022.11a
    • /
    • pp.457-458
    • /
    • 2022
  • 인터넷 시대에 소셜 미디어는 사람들의 삶에 완전히 침투했다. 많은 사용자 기반을 보유한 성숙한 온라인 플랫폼 중 하나인 Twitter를 통해 사용자는 최신 뉴스, 삶의 경험 및 흥미로운 삶의 이야기를 독립적으로 게시할 수 있다. 하지만 때론 부정적인 뉘앙스를 풍기며 기업이나 개인의 브랜드에 영향을 미치며 이익을 훼손하는 경우가 있기 때문에 욕설을 식별해 트위터 발신을 차단할 필요가 있다. 이 기사의 가장 큰 혁신은 Twitter 데이터를 사용하여 다양한 방법을 동시에 비교한다는 것입니다. 더 많은 데이터를 처리할수록 딥 러닝을 시도하면 좋은 결과를 얻을 수 있다. Transformer 분류기를 통합하여 최상의 결과를 얻었다

Semi-supervised learning for sentiment analysis in mass social media (대용량 소셜 미디어 감성분석을 위한 반감독 학습 기법)

  • Hong, Sola;Chung, Yeounoh;Lee, Jee-Hyong
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.24 no.5
    • /
    • pp.482-488
    • /
    • 2014
  • This paper aims to analyze user's emotion automatically by analyzing Twitter, a representative social network service (SNS). In order to create sentiment analysis models by using machine learning techniques, sentiment labels that represent positive/negative emotions are required. However it is very expensive to obtain sentiment labels of tweets. So, in this paper, we propose a sentiment analysis model by using self-training technique in order to utilize "data without sentiment labels" as well as "data with sentiment labels". Self-training technique is that labels of "data without sentiment labels" is determined by utilizing "data with sentiment labels", and then updates models using together with "data with sentiment labels" and newly labeled data. This technique improves the sentiment analysis performance gradually. However, it has a problem that misclassifications of unlabeled data in an early stage affect the model updating through the whole learning process because labels of unlabeled data never changes once those are determined. Thus, labels of "data without sentiment labels" needs to be carefully determined. In this paper, in order to get high performance using self-training technique, we propose 3 policies for updating "data with sentiment labels" and conduct a comparative analysis. The first policy is to select data of which confidence is higher than a given threshold among newly labeled data. The second policy is to choose the same number of the positive and negative data in the newly labeled data in order to avoid the imbalanced class learning problem. The third policy is to choose newly labeled data less than a given maximum number in order to avoid the updates of large amount of data at a time for gradual model updates. Experiments are conducted using Stanford data set and the data set is classified into positive and negative. As a result, the learned model has a high performance than the learned models by using "data with sentiment labels" only and the self-training with a regular model update policy.