Nowadays, clustering algorithm is considered as a promising solution for lacking human-labeled and massive data of social media sites in numerous machine learning tasks. Many researchers propose disaster event detection systems have ability to determine special local events, such as missing people, public transport damage by clustering similar tweets and hashtags together. In this paper, we try to extend tweet hashtag feature definition by applying word embedding. The experimental results are described that word embedding achieve better performance than the reference method.
인터넷과 스마트폰의 발달로 SNS서비스의 사용자와 데이터가 활발하게 증가하고 있다. 이로 인하여 SNS 데이터의 가치와 신뢰성이 점점 증가하고 있으며, 이러한 추세에 따라 여러 연구와 실험을 통하여 데이터를 분석하고 분석 결과를 제공하는 서비스가 증가하고 있다. 본 논문에서는 이러한 배경을 바탕으로 특정 키워드를 포함하고 있는 한글 트윗을 검색하여 해당 트윗에 대한 연관 키워드와 감정 키워드를 분석해서 출력해주는 시스템을 개발한다.
최근 전세계적으로 마이크로-블로그 형태의 소셜네트워크 서비스가 확산되어가고 있으며, 트위터(Twitter)란 이러한 가장 대표적인 소셜네트워크 서비스이다. 본 논문에서는 트위터를 매개로써 이루어지는 악성코드 유포 행위를 조사하기 위해 트위터에 올라오는 게시물(Tweet)들에서 약 93 만개의 링크를 임의 추출하여 다운받았고, 이중 7 개의 악성코드 배포 계정을 검출하여 해당 게시물과 계정의 특징을 조사하였다.
요즘 커뮤니케이션 수단으로 가장 각광받고 있는 도구는 소셜네트워크서비스(Social Network Service, 이하 SNS)로, 이용자들의 접근성과 편의성을 증진시키는 가장 효과적인 서비스로 자리 잡았다. 본 연구에서는 가장 대표적인 SNS 서비스 중 자동수집이 가능한 서비스인 트위터(Twittter)를 선정, 국내외 국립기록관의 트위터 운용 현황을 비교 분석하고 그 특징을 파악함으로써 이용자들의 관심도를 향상시키기 위한 활성화 방안을 제언하고자 한다. 이를 위해 미국의 NARA를 비롯해 영국의 TNA, 호주의 NAA와 국내의 국가기록원의 트윗(tweet)을 수집하고 이에 대한 정보 유형 분석과 시계열 분석을 실시하였다. 정보 유형 분석은 국립기록관이 제공하는 정보가 이용자의 정보 요구에 부응하는가를 살펴보는데 목적이 있으며 시계열 분석은 시간의 추이에 따른 이용자의 반응 추이를 살펴보는데 그 목적이 있다. 각국의 국립기록관 트위터 운용의 비교분석을 통해 4가지의 특성을 도출하였으며 이를 바탕으로 우리나라 국가기록원의 트위터 활성화 방안을 제언하였다.
소셜 네트워크 서비스는 편리한 접근성과 뚜렷한 사용자 주관 점에서 사회 여러 분야에서 폭 넓고 유용하게 사용될 충분한 가능성을 가지고 있다. 그 중에서도 트위터는 사용자간의 네트워크 형성이 간단하고 개방적이며 실시간 전파력이 뛰어난 특징을 가지고 있다. 그러나 140글자로 제한된 글에서 의미 분석을 시도해야 한다는 점과 한글 자연어처리의 한계, 트위터 자체의 제약과 기술적 문제들로 실제 분석에는 많은 어려움이 따른다. 본 논문은 특정 계정이나 키워드에 의존하여 개별 트윗을 분석한 기존의 방법 대신 항구성을 띄는 인간의 정치적 성향을 분석에 적용할 경우 정확도 향상에 기여할 수 있음을 가정하고 2012년 4월 11일 제19대 국회의원선거 기간 동안 수집한 트윗 코퍼스에 적용한 실험을 통해 보였다. 실험 결과는 실제 선거 결과와 정확히 일치하였으며, 75.4%의 정확도와 34.8%의 재현율을 보인 개별 트윗 분석보다 사용자의 타임라인별 정치 성향 분석이 약 8%의 정확도와 5%의 재현율 향상을 가져옴을 보였다.
Social Media transformed the mass media based information traffic, and it has become a key resource for finding value in enterprises and public institutions. Particularly, in regards to disaster management, the necessity for public participation policy development through the use of social media is emphasized. National Disaster Management Research Institute developed the Social Big Board, which is a system that monitors social Big Data in real time for purposes of implementing social media disaster management. Social Big Board collects a daily average of 36 million tweets in Korean in real time and automatically filters disaster safety related tweets. The filtered tweets are then automatically categorized into 71 disaster safety types. This real time tweet monitoring system provides various information and insights based on the tweets, such as disaster issues, tweet frequency by region, original tweets, etc. The purpose of using this system is to take advantage of the potential benefits of social media in relations to disaster management. It is a first step towards disaster management that communicates with the people that allows us to hear the voice of the people concerning disaster issues and also understand their emotions at the same time. In this paper, Korean language text mining based Social Big Board will be briefly introduced, and disaster issue detection model, which is key algorithms, will be described. Disaster issues are divided into two categories: potential issues, which refers to abnormal signs prior to disaster events, and occurrence issues, which is a notification of disaster events. The detection models of these two categories are defined and the performance of the models are compared and evaluated.
기존의 SNS(Social Networking Service)서비스에 LBS(Location-Based Service)서비스가 부가된 LBSNS(Location-Based Social Networking Service)서비스들이 상용화되면서 큰 인기를 얻고 있다. 트위터는 그러한 서비스의 대표적인 예라고 볼 수 있다. 트위터의 현재 위치기반서비스는 자신이 원하는 지역정보와 상관없는 정보를 구독하게 하는 구조로 되어 있다. 팔로잉한 사용자는 단순히 개인적인 선호도에 의해 지역정보가 추가된 메시지를 트윗하지만 구독하는 입장의 팔로워는 자신이 원하지 않는 지역정보를 받아 볼 수도 있다. 이러한 사항을 개선하기 위해 공간조인을 이용한 필터링 기법이 제안되었다. 필터링 기법을 위한 우선적인 작업은 바로 각각의 사용자와 트윗들에 위치정보가 추가되어져야 한다. 여기서 위치정보는 MBR(Minimum Bounding Rectangle)로 표현된다. 위치정보는 동적속성 또는 정적속성으로 나누어진다. 동적인 경우를 예를 들어보면 사용자가 지속적으로 움직이는 상황을 들 수 있다. 이 때 발생되는 대량의 연속질의는 사용자가 많은 SNS의 특성상 서버에 많은 부하를 줄 수 있다. 본 논문에서는 구글 맵 상에서 Virtual Grid를 생성하여 문제를 해결 하였고 성능 평가 결과 Virtual Grid를 사용하지 않았을 때 보다 질의 발생 빈도수가 줄어들었다.
대중들의 소통의 창구로 자리매김 하고 있는 소셜 네트워크 서비스(SNS)에 작성된 글은 감성을 많이 포함하고 있다는 특징을 갖고 있다. 그 중 트위터는 공개 Application Programming Interface(API)를 통한 데이터의 수집이 편리하다는 장점을 지니고 있다. 본 논문에서는 트위터 상에 표현된 사용자들의 감성 정보를 통해 사회적 이슈를 분석하고 마케팅 분야 활용 가능성을 제시한다. 이는 국민 또는 소비자의 의견과 반응을 필요로 하는 정부, 기업 등에 도움이 될 수 있다. 본 논문에서는 최근 사회적 이슈에 대한 트위터 텍스트 데이터를 긍정 또는 부정으로 분류하여 질적 분석을 제공하였고, 각 트윗의 좋아요 수, 리트윗 수 등에 대한 상관관계 분석을 통해 양적분석을 제공하였다. 질적 분석의 결과로 국민의 지지를 얻기 위해 관세정책을 홍보하고, 버즈 사용자에게는 기술적 편의를 제공할 것을 제안하였다. 양적 분석의 결과, 트위터 사용자들의 관심을 끌기 위해서는 긍정적인 트윗을 짧고 간단하게 작성해야 함을 밝혔다. 데이터의 수집 기간이 짧고, 단 두 가지의 키워드만을 분석하여 일반화 가능성이 떨어지는 한계를 가져 향후, 보다 긴 기간의 다양한 사회적 이슈를 분석할 예정이다.
트위터 사용자는 팔로우, 리트윗 등을 사용하여 자신이 관심 있어 하는 트윗을 찾는다. 하지만 사용자가 3억여 명에 달하는 트위터에서 사용자가 관심 있는 트윗을 찾기는 힘든 일이다. 이를 해결하기 위해 본 논문에서는 사용자 맞춤형 트윗 추천 시스템을 개발하였다. 우선, 사용자에게 추천할 수 있을 만한 가치가 있는 트윗을 수집하기 위해 현재 트랜드를 수집하고, 트랜드에 대해 이야기하는 인기 있는 트윗들을 수집한다. 이후 사용자를 분석하고 맞춤형 트윗을 추천하기 위해 사용자의 트윗과 수집한 트윗을 범주화한다. 최종적으로 웹서비스를 이용하여 사용자에게 본인과 카테고리가 일치하는 트윗과 관심사가 일치하는 사용자를 추천해준다. 결과적으로 67.2%로 적절한 트윗을 추천하였다.
구제역으로 인하여 국내 축산업계 및 관련 산업분야는 매년 막대한 피해를 입고 있다. 구제역과 관련한 다양한 학술적 연구들이 현재 진행되고는 있으나, 구제역의 발병에 따른 사회적 파급효과에 관한 공학적 분석 연구는 매우 제한적이다. 본 연구에서는 구제역에 관한 일반 시민들의 감성적 반응을 텍스트 마이닝 방법론을 사용하여 분석하는 체계적인 방법론을 제안한다. 제안하는 시스템은 먼저, 트위터에 게시된 트윗 중 구제역과 관련된 데이터를 수집한 후, 딥러닝 기법을 사용하여 극성 분류 과정을 거친다. 둘째, 토픽 모델링의 대표적인 기법 중 하나인 LDA를 활용하여 트윗으로 부터 키워드들을 추출하고, 추출된 키워드들로부터 극성별 동시출현 키워드 네트워크를 구성한다. 셋째, 키워드 네트워크을 통해 구제역의 위기단계 구간별 사회적 파급효과를 분석한다. 사례 분석으로써, 2010년 7월부터 2011년 12월까지 국내에서 발생한 구제역에 관한 일반 시민들의 감성적 변화를 분석하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.