• Title/Summary/Keyword: Turning Characteristics

Search Result 504, Processing Time 0.031 seconds

A study on size variation of micro-pattern according to turning radius of workpiece in diamond turning with controlled random cutting depth (절삭 깊이의 무작위 제어를 적용한 다이아몬드 선삭공정에서 소재회전 반경에 따른 미세패턴의 크기변화 분석 연구)

  • Jeong, Ji-Young;Han, Jun-Se;Choi, Doo-Sun;Je, Tae-Jin
    • Design & Manufacturing
    • /
    • v.14 no.1
    • /
    • pp.63-68
    • /
    • 2020
  • Ultra-high brightness and thin displays need to optical micro-patterns which can uniformly diffuse the lights and low loss. The micro random patterns have characteristics to rise the optical efficiency such as light extraction, uniform diffusion. For this reason, various fabrication processes are studied for random patterns. In this study, the micro random patterns were machined by diamond turning which used a controlled cutting tool path with random cutting depth. The machined patterns had random shape and directionality along the circumferential direction. The average width and length of machined random pattern according to rotation radius were 40.13㎛~55.51㎛ and 37.25㎛~59.49㎛, and these results were compared with the designed result. Also, the machining error according to rotation radius in diamond turning using randomly controlled cutting depth was discussed.

Hard Turning Machinability of V30 Cemented Carbide with PCD, cBN and PcBN Cutting Tool (초경합금재의 하드터닝에서 공구재종에 따른 절삭성)

  • Heo, Sung-Jung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.12
    • /
    • pp.47-54
    • /
    • 2008
  • Hard turning process can be defined as a single-point machining process carried out on "hard" materials. The process is intended to replace or limit traditional grinding operations that are expensive, environmentally unfriendly, and inflexible. The purpose of this study is to achieve a systematic understanding of machining characteristics and the effects of machining parameters on cutting force, tool wear shape and chip formation by the outer cutting of a kind of wear resistant tungsten carbide V30. Hard turning experiments were carried out on this alloy using the PCD (Poly Crystalline Diamond), cBN (cubic Boron Nitride) and PcBN (Polycrystalline cubic Boron Nitride) cutting tools. The PcBN and the usual cBN tools were used to be compare with the PCD tool and the dry turning was carried out. The PcBN is attractive as the tool material which replaces the PCD. The tool wear width and cutting force were measured, and the worn tool and chip were observed. The difference of the tool wear mechanism among the three tool materials was investigated.

An Investigation of Acoustic Signal Characteristics in Turning of Aluminum (알루미늄 선삭공정에서 발생되는 음향 신호 특성)

  • Lee, Chang-Hee;Kim, Yong-Yun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.457-462
    • /
    • 2007
  • This paper reports on the research which investigates acoustic signals acquired in turning with rough and finish simultaneously. The material is aluminum thin pipe. Two acoustic sensors were set on CNC machine. One was set on the finish bite and the other the rough. Two signals were first analyzed in order to consider how much the acoustic signal from the finish bite was coupled by that from the rough. A simple data collecting system to acquire signals from the finish was then determined because two acoustic signals were little coupled. Second the fundamental experiments were accomplished to study the effects of machine vibration and material state. The signal characteristics due to surface defects were studied from the collected acoustic signal data. The signal analysis was based on real time data, root mean squared average and frequency spectrum by fast fourier transform. As a result, the acoustic signals were made effects by machine condition, material structure. The acoustic signal from the finish bite was closely correlated with surface quality. Two types surface micro defects were then evaluated by the signal characteristics.

  • PDF

A Study on the Characteristics Analysis of Cutting Fluid Aerosol Using Dual-PDA System - for Turning Process (Dual-PDA를 이용한 절삭유 에어로졸 특성분석에 관한 연구(I) -선삭공정을 중심으로)

  • Jeong, J.Y.;Hwang, D.C.;Hong, G.B.;Woo, C.K.;Hwang, J.
    • Journal of ILASS-Korea
    • /
    • v.10 no.2
    • /
    • pp.10-17
    • /
    • 2005
  • The proposed research has been performed to know the characteristics of cutting fluid aerosol formation using Dual-PDA system in machining process. The cutting fluid aerosol size and concentration is common attributes that quantify the environmental intrusiveness or air quality contamination. The atomized cutting fluid aerosols can be affected to human health risk such as lung cancer and skin irritations. Even though cutting fluid can be improved the machining quality and productivity in a carefully. its use must be controlled and optimized carefully. This experimental works using Dual-PDA were performed to analyze the cutting fluid aerosol behaviors and characteristics in turning process using precise aerosol particle measuring system. The obtained experimental results profovide basic knowledge to develop the environmentally conscious machining process. This results cail be provided as a basis to estimate and control the hazardous cutting fluid aerosol in machining process.

  • PDF

An Investigation of Acoustic Signal Characteristics in Turning of Aluminum (알루미늄 선삭공정에서 발생되는 음향 신호 특성)

  • Kim, Yong-Yun;Lee, Chang-Hee
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.6 s.123
    • /
    • pp.507-514
    • /
    • 2007
  • This paper reports on the research which investigates acoustic signals acquired in turning with rough and finish simultaneously. The material is aluminum thin pipe. Two acousto-ultrasonic sensors were set on the finish and the rough bite of the CNC machine. It was first evaluated that one source was affected by the other. It was found that two signals were little affected each other, and that the acoustic signal from the finish bite was more related to the surface defects. Signals from the finish bite only were then analyzed in order to observe several types of surface defects. Second the fundamental experiments were accomplished to study the effects of machine vibration and material state. The signal characteristics due to surface defects were studied from the collected acoustic signals. The analysis was based on real time data, root mean squared average and frequency spectrum by fast fourier transform. As a result, the acoustic signals were made effects by machine condition, material structure. The acoustic signal from the finish bite was closely correlated with surface quality. Two types surface micro defects were then evaluated by the signal characteristics.

Heat Generation Characteristics of Whirling Spindle for Ball Screw Machining (볼스크류 가공용 선회형 스핀들의 발열 특성에 관한 연구)

  • Moon, Hong-Man;Kim, Sang-Won;Jeong, Ho-In;Lee, Choon-Man
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.10
    • /
    • pp.44-51
    • /
    • 2020
  • We studied the heating characteristics of a whirling spindle. This spindle is an important component of a whirling machine for turning a ball screw shaft. In the manufacturing process for a conventional ball screw shaft, a single tool is used to form a spiral in a lathe machine tool. Thereafter, a high-frequency heat treatment process is performed. Recently, a whirling-type cutting method has emerged. This method can perform hard turning in the rotating direction of the spiral portion of the ball screw shaft by rotating and mounting multiple tools. The whirling method can be applied to the heat-treated material. In this study, an experimental apparatus was constructed to analyze the whirling spindle. The experiment proceeded in four steps. The rotating speed of the whirling spindle was set to ISO random and sequential rising conditions. Cooling and non-cooling modes in the cooling jacket were tested. As a result of the above experiment, the heating characteristics of the whirling spindle were derived.

Effect of Heat/Mass Transfer in the turbine blade internal passage with various rib arrangement (회전하는 터빈 블레이드 이차유로내 요철 배열이 열/물질전달에 미치는 영향)

  • Lee, Sei-Young;Cho, Hyung-Hee
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.22-29
    • /
    • 2001
  • The present study investigates the effects of various rib arrangements and rotating on heat/mass transfer in the cooling passage of gas turbine blades. The cooling passage has very complex flow structure, because of the rib turbulator and rotating effect. Experiments and numerical calculation are conducted to investigate the complex flow structures and heat transfer characteristics; the numerical computation is performed using a commercial code, FLUENT ver.5, to calculate the flow structures and the experiments are conducted to measure heat/mass transfer coefficients using a naphthalene sublimation technique. For the rotating duct tests, the test duct, which is the cross section of is $20mm\times40mm$ (the hydraulic diameter, $D_h$, of 26.7 mm, has two-pass with $180^{\circ}$ turning and the rectangular ribs on the wall. The rib angle of attack is $70^{\circ}$ and the maximum radius of rotation is $21.63D_h$. The partition wall has 10 mm thickness, which is 0.5 times to the channel width, and the distance between the tip of the partition wall and the outer wall of the turning region is 26.7 mm $(1D_h)$. The turning effect of duct flow makes the very complex flow structure including Dean type vortex and high turbulence, so that the heat/mass transfer increases in the turning region and at the entrance of the second pass. The Coriolis effect deflects the flow to the trailing surface, resulting in enhancement of the heat/mass transfer on the trailing surface and reduction on the leading surface in the first pass. However, the opposite phenomena are observed in the second pass. The each rib arrangement makes different secondary flow patterns. The complex heat/mass transfer characteristics are observed by the combined effects of the rib arrangements, duct rotation and flow turning.

  • PDF

A Study on Shifting of Pivoting Point in accordance with Configuration of Ships (선형에 따른 전심의 이동에 관한 연구)

  • 최명식
    • Journal of the Korean Institute of Navigation
    • /
    • v.10 no.2
    • /
    • pp.83-96
    • /
    • 1986
  • In the restricted sea way such as fair way in harbor, narrow channel etc, the safe ship-handling is a very important problem, which is greatly related with turning ability of ships. It is of great importance that ship-handlers can grasp the position of pivoting point varying with time increase at any moment for relevant steering activities. Mean while, in advanced ship-building countries they study and investigated pivoting point related with turning characteristics, hut their main interest lies in ship design, not in safe ship controlling and maneuvering. In this regards it is the purpose of this paper to provide ship-handlers better under standing of pivoting point location together with turning characteristics and then to help them in safe ship-handling by presenting fact that pivoting points vary according to configuration of ships. The author calculated the variation of pivoting point as per time increase for various type of vessels, based on the hydrodynamic derivatives obtained at test of Davidson Laboratory of Stevens Institutes of Technology , New Jersey, U.S.A. The results were classified and investigated according to the magnitude of block coefficient , length-beam ratio, length-draft ratio, rudder area ratio ete, and undermentioned results were obtained. (1) The trajectory of pivoting point due to variation of rudder angle are all the same at any time, though the magenitude of turning circle are changed variously. (2) The moving of pivoting point is affected by the magnitude of block coefficient, length-beam ratio, length-draft ratio, however the effect by rudder area ratio might be disregarded. (3) In controlling and maneuvering of vessels in harbor, ship-handlers might regard that the pivoting point would be placed on 0.2~0.3L forward from center of gravity at initial stage. (4) The pivoting point of VLCC or container feeder vessels which have block coefficient more than 0.8 and length-beam ratio less than 6.5 are located on or over bow in the steady turning. (5) When a vessel intends to avoid some floating obstruction such as buoy forward around her eourse, the ship-handler might consider that the pivoting point would be close by bow in ballast condition and cloase by center of gravity in full-loaded condition.

  • PDF

The maneuvering characteristics of the research vessel NARA equipped with the azimuth thruster system (Azimuth thruster 시스템을 장착한 나라호의 조종성)

  • KIM, Jung-Chang;KANG, Il-Kwon;LEE, Jun-Ho;HAM, Sang-Jun;PARK, Chi-Wan;KIM, Su-Hyeng
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.53 no.3
    • /
    • pp.276-285
    • /
    • 2017
  • The research vessel NARA equipped with an azimuth thruster system was built in 2015. There are few vessels with this propulsion system in Korea. This vessel has two modes such as the normal for maneuvering and the power for investigation, and the other two modes as one axis and two axes on the operating. This type of vessels does not seem to have a clear grasp of the maneuvering character in comparison with the vessel with a conventional propulsion system. So the authors carried out the sea test for the turning, the zigzag and the inclination, and the results are as follows. In turning test, the case of using the two axes mode is much better than the case of using the one axis mode for the elements of turning, such as advance, transfer, tactical diameter and final diameter, but turning hard over the rudder in full speed is very vulnerable to capsize in both modes. In zigzag test, the yaw quicking responsibility index, T is very large excessively, which means a bad counter maneuvering ability, so an operator has to keep in mind that in turning operation. If necessary to avoid collision at head on situation, it may be a more effective method to use the crash astern stop than the turning according to the conditions and circumstances for the shortest stopping distance is very short.

Effect of Direction to be Used for the Timed Up and Go Test on Walking Time in Stroke Patients (일어서서 걷기 검사 시 회전 방향이 뇌졸중 환자의 보행 시간에 미치는 영향)

  • Lee, Geon;Cho, Cheol-hoon;Lim, Kyung-jin;Lee, Joo-hyun;Yoon, Gyu-ri;Woo, Young-keun
    • Physical Therapy Korea
    • /
    • v.23 no.2
    • /
    • pp.11-19
    • /
    • 2016
  • Background: In the stroke patients with the characteristics of hemiplegic gait, turning direction of the affected and unaffected side influences turning time. Therefore, it is important to investigate the walking response to turning directions in stroke patients. Objects: This study aimed to measure the walking time while turning direction in hemiplegic patients depending on balance ability measured by Berg Balance Scale. Methods: A group of forty-five subjects with stroke (Berg Balance Scale score${\geq}46$ were twenty-eight, Berg Balance Scale score${\leq}45$ were seventeen) were enrolled in this study. Subjects were asked to perform the Timed Up and Go test. Testing indications included two directions for turning in each subject. These indications were for turning toward the affected and unaffected side in stroke patients. The duration of total analysis duration, sit to stand phase, stand to sit phase, mid-turning phase, and end turning phase were recorded. The obtained data were analyzed by using paired t-test and Wilcoxon signed rank test in the group that are below and above 45 points of Berg Balance Scale score. The significance level was set at ${\alpha}=.05$. Results: There were significant increase time in the analysis duration and end turning phase duration while subjects were turned the unaffected side in stroke patients that presented a Berg Balance Scale score${\leq}45$ (p<.05). However, the comparison between the affected side and the unaffected side in the stroke patients with Berg Balance Scale score${\geq}46$, revealed no significant differences of the measured parameters. Conclusion: This finding should be suggested in the specific definition of turning direction for evaluation with Timed Up and Go test in the Berg Balance Scale score${\leq}45$, and other intervention for hemiplegic patients need to be suggested the direction of turning during walking training program.