• Title/Summary/Keyword: Turbulent heat transfer

Search Result 509, Processing Time 0.026 seconds

Turbulent Heat Transfer in Rough Concentric Annuli With Heating Condition of Constant Wal Heat Flux (일정벽면열유속의 가열조건의 갖는 거친 동심환형관내의 난류열전달)

  • 손유식
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.23 no.1
    • /
    • pp.54-61
    • /
    • 1999
  • The fully developed turbulent momentum and heat transfer induced by the roughness elements on the outer wall surfaces in concentric annuli are analytically studied on the basis of a modified turbu-lence model. The resulting momentum and heat transfer are discussed in terms of various parame-ters such as the radius ratio the roughness density Reynolds number and Prandtl number accord-ing to the heating condition. The study shows that certain artificial roughness elements may be used to enhance heat transfer rates with advantage from the overall efficiency point of view.

  • PDF

Analysis of the Turbulent Heat/Fluid Flow in a Ribbed Channel for Various Rib Shapes (채널 내 주기적으로 배열된 요철 형상이 난류 유동장/온도장에 미치는 영향 연구)

  • Choi D. H.;Ryu D. N.;Han Y. S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2002.05a
    • /
    • pp.128-133
    • /
    • 2002
  • The heat transfer characteristics of a turbulent flow in a ribbed two-dimensional channel have been investigated numerically. The fully elliptic governing equations, coupled with a four-equation turbulence model, $\kappa-\omega-\bar{t^2}-\epsilon_t$, are solved by a finite volume method of SIMPLE type. Calculations have been carried out for three rib cross-sections : square, triangular, and semicircular, with various rib pitches and Reynolds numbers. The procedure appears to be satisfactory as the results for the square rib compare favorably with available experimental data and earlier calculation. The optimal rib pitch that yields the maximum heat transfer has been identified. It is also found that the square rib is most effective in enhancing the heat transfer. The semicircular rib, on the other hand, incurs the least amount of pressure drop but the improvement in heat transfer is substantially lower.

  • PDF

Experimental Measurement of the Thermal-hydraulic Characteristics of subchannels in $6{\times}6$ rod bundles using LSVF mixing vanes (LSVF 혼합날개를 이용한 $6{\times}6$ 봉다발의 부수로에서의 열수력적 특성에 관한 실험적 측정)

  • Seo, Jeong-Sik;Bae, Kyoung-Keun;Choi, Young-Don
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.188-193
    • /
    • 2006
  • In present study, the thermal-hydraulic characteristics of the subchannels are investigated as measuring single-phase heat transfer coefficients and the cross sectional velocity field using LDV in the downstream of support grid in $6{\times}6$ rod bundles. Support grid with mixing vanes make enhancing heat transfer in rod bundles by generating turbulent flow. But this turbulent flow only is reserved in a short distance. Support grid with LSVF mixing vanes keep the turbulent flow a long distance. The experiments are performed at the nominal Reynolds number 30,000 and 50,000. The heat transfer coefficients are measured using heated and unheated copper sensor. In this study, the comparison of local heat transfer coefficients for LSVF mixing vane and split mixing vane is represented.

  • PDF

A Turbulent Boundary Layer Disturbed by an Elliptic Cylinder (타원형 실린더에 의해 교란되어진 난류경계층에 관한 실험적 연구)

  • Choe, Jae-Ho;Jo, Jeong-Won;Lee, Sang-Jun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.11
    • /
    • pp.1476-1482
    • /
    • 2001
  • Turbulent boundary layer over a flat plate was disturbed by installing an elliptic cylinder with an axis ratio of AR=2. For comparison, the same experiment was carried out for a circular cylinder having the same vertical height. The surface pressure and the heat transfer coefficient on the flat plate were measured with varying the gap distance between the elliptic cylinder and the flat plate. The mean velocity and the turbulent intensity profile of the streamwise velocity component were measured using a hot-wire anemometry. As a result, the flow structure and the local heat transfer rate were modified by the interaction between the cylinder wake and the turbulent boundary layer as a function of the critical gap ratio where the regular vortices start to shed. For the elliptic cylinder, the critical gap ratio is increased and the surface pressure on the flat plate is recovered rapidly at downstream location, compared with the equivalent circular cylinder. The maximum heat transfer rate occurs at the gap ratio of G/B = 0.5, where the flow interaction between the lower shear layer of the cylinder wake and the turbulent boundary layer is strong.

Influence of Unsteady Wake on Flow Characteristics and Heat Transfer from Linear Turbine Cascade (비정상후류가 선형터빈익렬의 유동 특성 및 익형의 열전달에 미치는 영향에 관한 연구)

  • Yoon, Soon-Hyun;Sim, Jae-Kyung;Lee, Dae-Hee
    • Proceedings of the KIEE Conference
    • /
    • 1998.11c
    • /
    • pp.1061-1064
    • /
    • 1998
  • To examine the influence of unsteady wake on the flow and heat transfer characteristics, an experiment has been conducted in a four-vane linear cascade. Flow and heat transfer measurements are made for the inlet Reynolds number of 66000(based on chord length and free-stream velocity). Turbulent intensity and stress were measured using hot wire anemometer, and to measure the convective heat transfer coefficients on the blade surfaces liquid crystal/gold film Intrex technique was used. The disturbance by the unsteady wake is characterized by the unresolved unsteadiness. The unsteady wake enhances the turbulent motion of flow in the cascade passage. It also promotes the boundary layer development and transition. The results show that heat transfer coefficients on the suction surface increase with increasing unresolved unsteadiness.

  • PDF

Numerical Analysis of Turbulent Heat Transfer on the Channel with Slat Type Blockage (障碍物 이 있는 平行平板사이 를 흐르는 亂流流動 의 熱傳達 解析)

  • 서광수;최영돈
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.6 no.3
    • /
    • pp.211-221
    • /
    • 1982
  • Numerical analysis has been made on the heat transfer of two dimensional turbulent channel with a slat type blockage. Especially the effects of the height of slat and Reynolds number on the heat transfer characteristics of channel wall have been investigated. The methods of accelerating the convergence of the numerical solution of governing differential equation have been also examined. Line-by-line iterative method shows higher convergence rate than point-by-point iterative method for solution of both momentum equation and energy equation. The results show that the ratio of heat transfer coefficient of the wall near the blockage to that of the fully developed flow increase with increasing the ratio of blockage to channel height and decreasing the Reynolds number. These trends of variation of heat transfer coefficient with respect to the height of slat and Reynolds number agree with those of Sparrow's experiment on the pipe flow with slat type blockage.

Numerical Optimization of Heat Transfer Surfaces with Staggered Ribs (엇갈린 리브가 부착된 열전달면의 수치최적설계)

  • Kim, Hong-Min;Kim, Kwang-Yong
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.735-740
    • /
    • 2003
  • In this study, a numerical optimization to find the optimal shape of streamwise periodic ribs mounted on both of the principal walls is performed to enhance turbulent heat transfer in a rectangular channel. The optimization is based on Navier-Stokes analysis of flow and heat transfer with $k-{\varepsilon}$ turbulence model and is implemented using response surface method. The width-to-height ratio of a rib, rib height-to-channel height ratio, rib pitch to rib height ratio and distance between opposite ribs to rib height ratio are chosen as design variables. The object function is defined as a function of heat transfer coefficient and friction drag coefficient with weighting factor. Optimum shapes of the rib have been investigated for the range of 0.0 to 0.1 of weighting factor.

  • PDF

Design Optimization of Dimple Shape to Enhance Heat Transfer (열전달 증진을 위한 딤플형상의 최적설계)

  • Choi, Ji-Yong;Kim, Kwang-Yong
    • 유체기계공업학회:학술대회논문집
    • /
    • 2004.12a
    • /
    • pp.285-288
    • /
    • 2004
  • This study presents a numerical procedure to optimize the shape of dimple surface to enhance turbulent heat transfer in rectangular channel. The response surface based optimization method is used as an optimization technique with Reynolds-averaged Wavier-Stokes analysis of fluid flow and heat transfer with shear stress transport (SST) turbulence model. The dimple depth-to -dimple print diameter ratio, channel height- to- dimple print diameter ratio. and dimple print diameter-to-pitch ratio are chosen as design variables. The objective function is defined as a linear combination of heat transfer coefficient and friction drag coefficient with a weighting factor. Full factorial method is used to determine the training points as a mean of design of experiment.

  • PDF

Influence of Unsteady Wake on Flow Characteristics and Heat Transfer from Linear Turbine Cascade (비정상후류가 선형터빈익렬의 유동 특성 및 익혀의 열전달에 미치는 영향에 관한 연구)

  • Yoon, Soon-Hyun;Sim, Jae-Kyung;Lee, Dae-Hee
    • Proceedings of the KIEE Conference
    • /
    • 1998.11b
    • /
    • pp.713-716
    • /
    • 1998
  • To examine the influence of unsteady wake on the flow and heat transfer characteristics, an experiment has been conducted in a four-vane linear cascade. Flow and heat transfer measurements are made for the inlet Reynolds number of 66000(based on chord length and free-stream velocity). Turbulent intensity and stress were measured using hot wire anemometer, and to measure the convective heat transfer coefficients on the blade surfaces liquid crystal/gold film Intrex technique was used. The disturbance by the unsteady wake is characterized by the unresolved unsteadiness. The unsteady wake enhances the turbulent motion of flow in the cascade passage. It also promotes the boundary layer development and transition. The results show that heat transfer coefficients on the suction surface increase with increasing unresolved unsteadiness.

  • PDF

An Analysis of Heat Transfer in the Flue Tube of a Pulse Combustor (맥동연소기 도관에서의 열전달 해석)

  • Kim, C.K.;Cha, S.M.;Pak, H.Y.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.4 no.1
    • /
    • pp.20-32
    • /
    • 1992
  • A numerical solution for heat transfer in the flue tube of a pulse combustion water heater was presented. The $k-{\varepsilon}$ turbulent model was adopted to describe turbulent characteristics and radiative heat transfer was calculated by P-N approximation. Three pulsating conditions equivalent to existing experimental studies were used for analysis. Pulsating pressure was specified at the inlet and outlet of flue tube and numerical procedure using control volume method and pressure boundary condition was presented. It was found that the present mathematical model and numerical method could predict effectively the flow field and heat transfer for the flue tube in pulse combustor.

  • PDF