• 제목/요약/키워드: Turbulent channel flow

검색결과 332건 처리시간 0.025초

각도변화에 따른 Sharp Plane의 유동특성에 관한 PIV계측 (PIV Measurement on the Flow Characteristics of a Sharp Plane with Inclined Angles)

  • 최종웅;한종석;강호근;문종춘;이영호
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2001년도 춘계학술대회 논문집
    • /
    • pp.28-33
    • /
    • 2001
  • Animation understanding and time-resolved analysis of the wake characteristic of 2-D sharp plane flows were executed by applying the multi-vision PIV to a sharp plane(three angle of attacks : $15^{\circ}, \; 30^{\circ}, \; 45^{\circ}$) submerged within a circulating water channel($Re = 2{\times}10^4$). The macroscopic shedding patterns were discussed in terms of instantaneous velocity, vorticity, velocity profile, kinetic energy, turbulent intensity, frequency analysis. Particularly, the time-averaged distribution of turbulent intensity in each experimental cases revealed separate island-like small regions magnitude of turbulent intensity was always strengthened.

  • PDF

사다리꼴 개수로에서 동수두를 고려한 제방 침투에 관한 실험연구 (Experimental Study on Levee Seepage Considering Dynamic Head in a Trapezoidal Open-Channel)

  • 임동균;김규호
    • 대한토목학회논문집
    • /
    • 제29권3B호
    • /
    • pp.239-245
    • /
    • 2009
  • 제방은 형태 및 구성이 중력댐과 유사한 수리구조물이나, 외력조건에서 중력댐과 다른 특성을 가진다. 제방은 제외지의 수위와 흐름의 영향을 복합적으로 받는 구조물로서 하천의 흐름조건을 무시한 기존 연구와 같이 침투 안전성 해석을 시행하는 것은 바람직하지 않다. 본 연구에서는 하천제방 주변의 흐름인 사다리꼴 개수로 흐름구조와 제외지 흐름이 제방침투에 미치는 영향을 분석하기 위한 실험을 수행하였다. 사다리꼴 개수로 흐름구조는 유속분포 및 바닥면 전단응력에 있어 직사각형 개수로 흐름과 상이하였다. 또한 유속이 0.5 m/s인 경우에 침투 수두는 흐름이 없는 경우와 비교하여 10%정도 크게 나타났다. 이러한 현상은 동수두, 이차류, 난류 변동성분에 의한 인자, 그리고 다양한 물리적 영향에 기인한다. 따라서 침투해석의 외력조건은 수위뿐만 아니라, 흐름에 의한 영향을 고려할 필요가 있다.

여러 가지 형태의 립이 설치된 수평채널의 열전달 및 압력강하 특성에 관한 수치해석 (Numerical analysis on heat transfer and pressure drop characteristics in a horizontal channel with various ribs)

  • 김지훈;허주녕;안성후;이두호;손영석;신지영
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제37권1호
    • /
    • pp.40-46
    • /
    • 2013
  • 열전달 향상을 위하여 이차유동을 발생시켜 열전달을 증가시키는 방법에는 여러 가지가 있다. 본 연구에서는 수평채널에 다양한 형태의 립을 설치하여 유속을 변화시켰을 때의 열전달 및 압력강하 특성을 수치해석을 통하여 고찰하였다. 립은 수평채널의 아랫면에 설치하였고, 립의 높이는 5mm이다. 립이 $60^{\circ}$ 기울어지고 그루브도 설치된 경우 열전달 특성이 가장 우수하게 나타났는데, 이는 주유동이 립을 따라 흘러가면서도 유속이 어느 정도 유지되기 때문이다. 끊어진 립에서 주유동이 립의 저항을 적게 받으면서 압력강하가 가장 작게 나타났다. 모든 립의 형태에서 유속이 증가함에 따라 열전달이 향상되는 경향을 보였지만 성능계수는 감소하였다.

미세 수평 사각 유로 내에서의 비등 유동 압력강하에 관한 실험적 연구 (An Experimental Study on Pressure Drop of Boiling Flow within Horizontal Rectangular Channels with Small Heights)

  • 이상용;이한주
    • 대한기계학회논문집B
    • /
    • 제25권9호
    • /
    • pp.1219-1226
    • /
    • 2001
  • Pressure drops were measured for the flow boiling process within horizontal rectangular channels. The gap between the upper and the lower plates of each channel ranges from 0.4 to 2mm while the channel width being fixed to 20mm. Refrigerant 113 was used as the test fluid. The mass flux ranges from 50 to 200kg/㎡s and the channel walls were uniformly heated up to 15kW/㎡. The quality range covers from 0.15 to 0.75. The present experimental conditions coincide with the operating conditions of compact heat exchangers in which the liquid and gas flows are laminar and turbulent. The measured results were well represented by the two-phase frictional multiplier of Lee (2001) which has been developed for air-water two-phase flows within the deviation of $\pm$20%.

Heat Transfer and Frictions in the Convergent/divergent Channel with Λ/V-shaped Ribs on Two Walls

  • Kim, Beom-soo;Lee, Myung-sung;Ahn, Soo-whan
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제18권3호
    • /
    • pp.395-402
    • /
    • 2017
  • The local heat transfer and total pressure drops of developed turbulent flows in the ribbed rectangular convergent/divergent channels with ${\Lambda}/V-shaped$ ribs have been investigated experimentally. The channels have the exit hydraulic diameter ($D_{ho}$) to inlet hydraulic diameter ($D_{hi}$) ratios of 0.67 for convergence and 1.49 for divergence, respectively. The ${\Lambda}/V-shaped$ ribs with three different flow attack angles of $30^{\circ}$, $45^{\circ}$, and $60^{\circ}$ are manufactured with a fixed rib height (e) of 10 mm and the ratio of rib spacing (S) to height (e) of 10 on the walls. Thermal performances of the ribbed rectangular convergent/divergent channels are compared with the smooth straight tube under identical pumping power. The results show that the flow attack angle of $45^{\circ}$ with ${\Lambda}-shaped$ rib has the greatest thermal performance at all the Reynolds numbers studied in the convergent channel; whereas, the flow attack angle of $60^{\circ}$ with V-shaped rib has the greatest thermal performance over Reynolds number of 30,000 in the divergent channel.

LSVF 혼합날개를 이용한 $6{\times}6$ 봉다발의 부수로에서의 열수력적 특성에 관한 실험적 측정 (Experimental Measurement of the Thermal-hydraulic Characteristics of subchannels in $6{\times}6$ rod bundles using LSVF mixing vanes)

  • 서정식;배경근;최영돈
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2006년도 하계학술발표대회 논문집
    • /
    • pp.188-193
    • /
    • 2006
  • In present study, the thermal-hydraulic characteristics of the subchannels are investigated as measuring single-phase heat transfer coefficients and the cross sectional velocity field using LDV in the downstream of support grid in $6{\times}6$ rod bundles. Support grid with mixing vanes make enhancing heat transfer in rod bundles by generating turbulent flow. But this turbulent flow only is reserved in a short distance. Support grid with LSVF mixing vanes keep the turbulent flow a long distance. The experiments are performed at the nominal Reynolds number 30,000 and 50,000. The heat transfer coefficients are measured using heated and unheated copper sensor. In this study, the comparison of local heat transfer coefficients for LSVF mixing vane and split mixing vane is represented.

  • PDF

난류 혼합층에서 확산화염에 대한 flame hole dynamics 모델 (Flame Hole Dynamics Model of a Diffusion Flame in Turbulent Mixing Layer)

  • 김준홍;정석호;안국영;김종수
    • 한국연소학회지
    • /
    • 제8권3호
    • /
    • pp.15-23
    • /
    • 2003
  • Partial quenching structure of turbulent diffusion flames in a turbulent mixing layer is investigated by the method of flame hole dynamics in order to develop a prediction model for turbulent flame lift off. The essence of flame hole dynamics is derivation of the random walk mapping, from the flame-edge theory, which governs expansion or contraction of flame holes initially created by local quenching events. The numerical simulation for flame hole dynamics is carried out in two stages. First, a direct numerical simulation is performed for constant-density fuel-air channel mixing layer to obtain the turbulent flow and mixing fields, from which a time series of two dimensional scalar dissipation rate array is extracted at a fixed virtual flame surface horizontally extending from the end of split plate to the downstream. Then, the Lagrangian simulation of the flame hole random walk mapping projected to the scalar dissipation rate array yields temporally evolving turbulent extinction process and its statistics on partial quenching characteristics. The statistical results exhibit that the chance of partial quenching is strongly influenced by the crossover scalar dissipation rate while almost unaffected by the iteration number of the mapping that can be regarded as a flame-edge speed.

  • PDF

LES를 이용한 열린 공동 유동과 공동 내 물질 확산의 수치적 모사 (LARGE EDDY SIMULATION OF FLOW AND MASS EXCHANGE PROCESSES BETWEEN A CHANNEL AND AN OPEN CAVITY)

  • 장경식;박승오
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2005년도 추계 학술대회논문집
    • /
    • pp.239-243
    • /
    • 2005
  • Fully three-dimensional Large Eddy Simulation calculations of the flow past 2D cavity are conducted to study the purging of neutrally buoyant or dense miscible contaminants introduced instantaneously inside the cavity. The length to depth ratio(L/D) is 2 and Reynolds number based on the depth is 3,360. Fully developed turbulent inflow are fed at the inlet from precursor simulation of channel flow. Mean flow pattern and unsteady features are investigated based on the experimental data of Pereira and Sousa. From the study of mass exchange processes, it is found that the mechanism of removal of the contaminant is very different between the non-buoyant and buoyant cases. In the buoyant case, internal wave motion which interacts with a strong cavity vortex is dominant in the ejection mechanism of the contaminants.

  • PDF

Observing Thermal Counterflow in He II by the Particle Image Velocimetry Technique

  • Van Sciver S. W.
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제7권2호
    • /
    • pp.1-6
    • /
    • 2005
  • The Particle Image Velocimetry (PIV) technique can be used to obtain a whole-field view of thermal counterflow velocity profile in He II. Using commercially available microspheres, we have been able to visualize the normal fluid velocity in He II thermal counterflow; however, the measured velocities are less than predicted from the two fluid model. None the less, the PIV is a useful tool for observing the counterflow field in He II flow, particularly where the flow is complex as occurs through channel constrictions or around bluff objects. The present paper shows recent results using PIV to observe He II counterflow. Two cases are discussed: 1D channel flow and turbulent flow around a circular cylinder.