• Title/Summary/Keyword: Turbulent Water Flow

Search Result 383, Processing Time 0.029 seconds

A multiphase flow modeling of gravity currents in a rectangular channel (사각형 수로에서 중력류의 다상흐름 수치모의)

  • Kim, Byungjoo;Paik, Joongcheol
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.10
    • /
    • pp.697-706
    • /
    • 2019
  • A multiphase flow modeling approach equipped with a hybrid turbulence modeling method is applied to compute the gravity currents in a rectangular channel. The present multiphase solver considers the dense fluid, the less-dense ambient fluid and the air above free surface as three phases with separate flow equations for each phase. The turbulent effect is simulated by the IDDES (improved delayed detach eddy simulation), a hybrid RANS/LES, approach which resolves the turbulent flow away from the wall in the LES mode and models the near wall flow in RANS mode on moderately fine computational meshes. The numerical results show that the present model can successfully reproduce the gravity currents in terms of the propagation speed of the current heads and the emergence of large-scale Kelvin-Helmholtz type interfacial billows and their three dimensional break down into smaller turbulent structures, even on the relatively coarse mesh for wall-modeled RANS computation with low-Reynolds number turbulence model. The present solutions reveal that the modeling approach can capture the large-scale three dimensional behaviors of gravity current head accompanied by the lobe-and-cleft instability at affordable computational resources, which is comparable to the LES results obtained on much fine meshes. It demonstrates that the multiphase modeling method using the hybrid turbulence model can be a promising engineering solver for predicting the physical behaviors of gravity currents in natural environmental configurations.

A Study of Beat Transfer Characteristics of Large Scale Vortex Flow Mixing Vane of Nuclear Fuel Rod Bundle (핵연료집합체에서의 대형이차와류 혼합날개의 열전달 특성에 관한 연구)

  • An, Jeong-Soo;Choi, Young-Don
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.1 s.244
    • /
    • pp.24-31
    • /
    • 2006
  • Mixing vanes have been installed in the space grid of nuclear fuel rod bundle to improve turbulent heat transfer. Split mixing vanes induce the vortex flow in the cooling water to swirl in sub-channel of fuel assembly. But, The swirling flow decays rapidly so that the heat transfer enhancing effect limited to short length after the mixing vane. In thi present study, the large scale vortex flow(LSVF) is generated by rearranging the mixing vanes to the coordinated directions. This LSVF mixing vanes generate the most strong secondary flow vortices which maintain about 35 $D_H$ after the spacer grid. The streamwise vorticity generated by LSVF sustain two times more than that split mixing vane. Heat transfer in the rod bundle occurs greatly at the same direction to cross flow, and maximum temperature at the surface of bundle drops about 1.5K

MEASUREMENT OF THE SINGLE AND TWO PHASE FLOW USING A NEWLY DEVELOPED AVERAGE BIDIRECTIONAL FLOW TUBE

  • Yun, Byong-Jo;Euh, Dong-Jin;Kang, Kyunc-Ho;Song, Chul-Hwa;Baek, Won-Pil
    • Nuclear Engineering and Technology
    • /
    • v.37 no.6
    • /
    • pp.595-604
    • /
    • 2005
  • A new instrument, an average BDFT (Birectional Flow Tube), was proposed to measure the flow rate in single and two phase flows. Its working principle is similar to that of the Pilot tube, wherein the dynamic pressure is measured. In an average BDFT, the pressure measured at the front of the flow tube is equal to the total pressure, while that measured at the rear tube is slightly less than the static pressure of the flow field due to the suction effect downstream. The proposed instrument was tested in air/water vertical and horizontal test sections with an inner diameter of 0.08m. The tests were performed primarily in single phase water and air flow conditions to obtain the amplification factor(k) of the flow tube in the vertical and horizontal test sections. Tests were also performed in air/water vertical two phase flow conditions in which the flow regimes were bubbly, slug, and churn turbulent flows. In order to calculate the phasic mass flow rates from the measured differential pressure, the Chexal drift-flux correlation and a momentum exchange factor between the two phases were introduced. The test results show that the proposed instrument with a combination of the measured void fraction, Chexal drift-flux correlation, and Bosio & Malnes' momentum exchange model could predict the phasic mass flow rates within a $15\%$ error. A new momentum exchange model was also proposed from the present data and its implementation provides a $5\%$ improvement to the measured mass flow rate when compared to that with the Bosio & Malnes' model.

Variation Characteristics of Irregular Wave Fields around 2-Dimensional Low-Crested-Breakwater (2차원저천단구조물(LCS)의 주변에서 불규칙파동장의 변동특성)

  • Lee, Kwang-Ho;Choi, Goon Ho;Lee, Jun Hyeong;Jung, Uk Jin;Kim, Do-Sam
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.31 no.6
    • /
    • pp.356-367
    • /
    • 2019
  • This study evaluates the variation characteristics of irregular wave fields for two-dimensional Low-Crested Structure (LCS) by olaFlow model based on the two-phases flow by numerical analysis. The numerical results of olaFlow model are verified by comparing irregular wave profile of target wave spectrum and measured one, and their spectra. In addition, spacial variation of irregular wave spectrum, wave transmission ratio, root-mean square wave height, time-averaged velocity and time-averaged turbulent kinetic energy by two-dimensional LCS are discussed numerically. The time-averaged velocity, one of the most important numerical results is formed counterclockwise circulating cell and clockwise nearshore current on the front of LCS, and strong uni-directional flow directing onshore side around still water level.

Experimental investigation of turbulent effects on settling velocities of inertial particles in open-channel flow (개수로 흐름에서 난류가 관성입자의 침강속도에 미치는 영향에 대한 실험연구)

  • Baek, Seungjun;Park, Yong Sung;Jung, Sung Hyun;Seo, Il Won;Jeong, Won
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.11
    • /
    • pp.955-967
    • /
    • 2022
  • Existing particle tracking models predict vertical displacement of particles based on the terminal settling velocity in the stagnant water. However, experimental results of the present study confirmed that the settling velocity of particles is influenced by the turbulence effects in turbulent flow, consistent with the previous studies. The settling velocity of particles and turbulent characteristics were measured by using PTV and PIV methods, respectively, in order to establish relationship between the particle settling velocity and the ambient turbulence. It was observed that the settling velocity increase rate starts to grow when the particle diameter is of the same order as Kolmogorov length scale. Compared with the previous studies, the present study shows that the graphs of the settling velocity increase rate according to the Stokes number have concave shapes for each particle density. In conclusion, since the settling velocity in the natural flow is faster than in the stagnant water, the existing particle tracking model may estimate a relatively long time for particles to reach the river bed. Therefore, the results of the present study can help improve the performance of particle tracking models.

Hydraulic Characteristics of Dam Break Flow by Flow Resistance Stresses and Initial Depths (흐름저항응력 및 초기수심에 따른 댐붕괴류의 수리특성)

  • Song, Chang Geun;Lee, Seung Oh
    • Journal of Korea Water Resources Association
    • /
    • v.47 no.11
    • /
    • pp.1077-1086
    • /
    • 2014
  • The flood wave generated due to dam break is affected by initial depth upstream since it is related with hydraulic characteristics propagating downstream, and flow resistance stress has influence on the celerity, travel distance, and approaching depth of shock wave in implementing numerical simulation. In this study, a shallow water flow model employing SU/PG scheme was developed and verified by analytic solutions; propagation characteristics of dam break according to flow resistance and initial depth were analyzed. When bottom frictional stress was applied, the flow depth was relatively higher while the travel distance of shock wave was shorter. In the case of Coulomb stress, the flow velocity behind the location of dam break became lower compared with other cases, and showed values between no stress and turbulent stress at the reach of shock wave. The value of Froude number obtained by no frictional stress at the discontinuous boundary was the closest to 1.0 regardless of initial depth. The adaption of Coulomb stress gave more appropriate results compared with turbulent stress at low initial depth. However, as the initial depth became increased, the dominance of flow resistance terms was weakened and the opposite result was observed.

An Experimental Study on the Transitional Flows in a Concentric Annu- lus with Rotating Inner Cylinder (안쪽축이 회전하는 환형관내 천이유동에 관한 연구)

  • 김영주;김철수;황영규
    • Journal of Energy Engineering
    • /
    • v.11 no.4
    • /
    • pp.299-305
    • /
    • 2002
  • The present experimental and numerical investigations are performed on the characteristics of transitional flow in a concentric annulus with a diameter ratio of 0.52, whose outer cylinder is stationary and inner one rotating. The pressure losses and skin-friction coefficients have been measured for the fully devel-oped flow of water and that of 0.2% CMC-water solution at a inner cylinder rotational speed of 0∼600 rpm, respectively. The transitional flow has been examined by the measurement of pressure losses to reveal the relation of the Reynolds and Rossby numbers with the skin-friction coefficients. The occurrence of transition has been checked by the gradient changes of pressure losses and skin-friction coefficients with respect to the Reynolds numbers. The increasing rate of skin-friction coefficient due to the rotation is uniform for laminar flow regime, whereas it is suddenly reduced for transitional flow regime and, then, it is gradually decreased for turbulent flow regime.

A Study on Mean Flow Velocity Measurement by Cross Correlation of Ultrasonic Waves (초음파 상호상관 기법을 이용한 유체의 평균유속 측정 연구)

  • Kim, Chang-Ho;Lee, Dug-Ki;Paik, Jong-Seung;Jho, Moon-Jae
    • The Journal of the Acoustical Society of Korea
    • /
    • v.14 no.2
    • /
    • pp.5-15
    • /
    • 1995
  • An application of the cross correlation technique by adopting ultrasonic waves for water pipe flow measuring purpose is studied. It is a non-intrusive flow metering method by determining the time of the flight of the flow turbulent noise and its non-obstructing mechanism enables to reduce process energy loss due to the flowmeter obstruction. A digital signal processor for the purpose of the real time Fourier transform was employed for the fast time calculation of the flow velocity. The overall accuracy was found as about $1\%$ for flow velocities from 0.25 m/s up to 16 m/s and for the pipe inside diameters from 50mm to 248mm. The cross correlation technique can be used for the tap water utility including most common liquid flows.

  • PDF

A Study of Turbulence Generation Characteristics of Large Scale Vortex Flow Mixing Vane of Nuclear Fuel Rod Bundle (핵연료집합체에서의 대형이차와류 혼합날개의 난류생성 특성에 관한 연구)

  • An, J.S.;Choi, Y.D.
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1819-1824
    • /
    • 2004
  • The common method to improve heat transfer in Nuclear fuel rod bundle is install a mixing vane in space grid. The previous split mixing vane is guides cooling water to swirl flow in sub-channel of fuel assembly. But, this swirl flow decade rapidly after mixing vane and the effect of enhancing the heat transfer vanish behind this short region. The large scale secondary vortex flow was generated by rearranging the inclined angle direction of mixing vanes to the coordinated directions. This LSVF mixing vanes generate the most strong secondary flow vortices which maintain about 35 $D_H$ after the spacer grid and the streamwise vorticity in subchannel with LSVF mixing vane sustain two times more than that in subchannel with split mixing vane. The turbulent kinetic energy and the Reynolds stresses generated by the mixing vanes have nearly same scales but maintain twice more than previous type.

  • PDF

A Study of Turbulence Generation Characteristics of Large Scale Vortex Flow Mixing Vane of Nuclear Fuel Rod Bundle (핵연료 집합체에서의 대형 이차 와류 혼합날개의 난류생성 특성에 관한 연구)

  • An Jeong-Soo;Choi Yong-Don
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.10
    • /
    • pp.811-818
    • /
    • 2006
  • Mixing vanes have been installed in the space grid of nuclear fuel rod bundle to improve turbulent heat transfer. Split mixing vanes induce the vortex flow in the cooling water to swirl in sub-channel of fuel assembly. But, The swirling flow decays rapidly so that the heat transfer enhancing effect limited to short length after the mixing vane. In the present study, the large scale vortex flow (LSVF) is generated by rearranging the mixing vanes to the coordinated directions. This LSVF mixing vanes generate the most strong secondary flow vortices which maintain about $35D_h$ after the spacer grid. The streamwise vorticity generated by LSVF sustain two times more than that split mixing vane.