• 제목/요약/키워드: Turbulent Wall jet

검색결과 78건 처리시간 0.018초

A numerical study of a confined turbulent wall jet with an external stream

  • Yan, Zhitao;Zhong, Yongli;Cheng, Xu;McIntyre, Rory P.;Savory, Eric
    • Wind and Structures
    • /
    • 제27권2호
    • /
    • pp.101-109
    • /
    • 2018
  • Wall jet flow exists widely in engineering applications, including the simulation of thunderstorm downburst outflows, and has been investigated extensively by both experimental and numerical methods. Most previous studies focused on the scaling laws and self-similarity, while the effect of lip thickness and external stream height on mean velocity has not been examined in detail. The present work is a numerical study, using steady Reynolds-Averaged Navier Stokes (RANS) simulations at a Reynolds number of $3.5{\times}10^4$, of a turbulent plane wall jet with an external stream to investigate the influence of the wall jet domain on downstream development of the flow. The comparisons of flow characteristics simulated by the Reynolds stress turbulence model closure (Stress-omega, SWRSM) and experimental results indicate that this model may be considered reasonable for simulating the wall jet. The confined wall jet is further analyzed in a parametric study, with the results compared to the experimental data. The results indicate that the height and the width of the wind tunnel and the lip thickness of the jet nozzle have a great effect on the wall jet development. The top plate of the tunnel does not confine the development of the wall jet within 200b of the nozzle when the height of the tunnel is more than 40b (b is the height of jet nozzle). The features of the centerline flow in the mid plane of the 3D numerical model are close to those of the 2D simulated plane wall jet when the width of the tunnel is more than 20b.

NUMERICAL SIMULATION OF SCOUR BY A WALL JET

  • A.A.Salehi Neyshabouri;R.Barron;A.M.Ferreira da Silva
    • Water Engineering Research
    • /
    • 제2권3호
    • /
    • pp.179-185
    • /
    • 2001
  • The time consuming and expensive nature of experimental research on scouring processes caused by flowing water makes it attractive to develop numerical tools for the predication of the interaction of the fluid flow and the movable bed. In this paper the numerical simulation of scour by a wall jet is presented. The flow is assumed to be two-dimensional, and the alluvium is cohesionless. The solution process, repeated at each time step, involves simulation of a turbulent wall jet flow, solution of the convection-diffusion of sand concentration, and prediction of the bed deformation. For simulation of the jet flow, the governing equations for momentum, mass balance and turbulent parameters are solved by the finite volume method. The SIMPLE scheme with momentum interpolation is used for pressure correction. The convection-diffusion equation is solved for sediment concentration. A boundary condition for concentration at the bed, which takes into account the effect of bed-load, is implemented. The time rate of deposition and scour at the bed is obtained by solving the continuity equation for sediment. The shape and position of the scour hole and deposition of the bed material downstream of the hole appear realistic.

  • PDF

벽면 충돌 난류 확산화염의 특성 (The Characteristics of Turbulent Diffusion Flame Impinging on the Wall)

  • 박용열;김호영
    • 대한기계학회논문집B
    • /
    • 제23권2호
    • /
    • pp.175-184
    • /
    • 1999
  • A theoretical study on the turbulent round jet diffusion flame impinging on the wall was carried out to predict the characteristics and structure of Impinging jet flame and heat transfer to the wall. Finite chemistry via Arrhenius equation and eddy dissipation model was adopted as a combustion model, and the Favre averaging and $k-{\varepsilon}$ model were Introduced In the theoretical modeling. The SIMPLE algorithm was applied to the calculation. All the transport properties were considered as the variable depending on the temperature and composition. For the parametric study, the distance from nozzle to impinging wall and Reynolds number at nozzle exit were chosen 88 the major parameters. As the results of the present study, the characteristics of flow fields, the distributions of main variables and each chemical species and the flame shapes were obtained. The heat transfer rate from the flame to the wall and the effective heating area were calculated to investigate the Influences of the major parameters on the heat transfer characteristics.

2次元 亂流 Stepped Wall Jet 의 流動特性 (Flow Characteristics of Two-Dimensional Turbulent Stepped Wall Jet)

  • 부정숙;김경천;박진호;강창수
    • 대한기계학회논문집
    • /
    • 제9권6호
    • /
    • pp.732-742
    • /
    • 1985
  • 본 논문에서는 이 2차원 재부착분류(본문에서는 stepped wall jet라 명명함) 유동장을 재부착상류 부분, 재부착점 근방, 재부착 이후의 재발전 벽면분류 지역의 세 영역으로 구분하여 재부착 길이, 평균속도, 벽면정압을 측정하고 on-line에 의한 디지 틀 데이터 처리기법을 이용하여 난류강도, 레이놀즈 전단응력, 속도의 3승적(triple velocity product), integral length scale, Taylor's microscale 등을 실험적으로 구 하여 재부착 상류 부분에서는 자유분류와 비교하고, 재부착 이후에서는 2차원 벽면분 류와 비교하기로 한다.그리하여 초기 교란을 받는 분류가 벽면에 재부착하여 2차원 벽면분류로 재발전되어 가는 과정에 있어서의 평균 유동장과 급격한 변화를 갖는 난류 특성을 상세히 조사하여, 보다 일반적으로 적용될 수 있는 난류모델을 개발함에 있어 서 실험적인 자료를 제공하고자 한다. Fig. 1은 본 실험의 유동장에 대한 개약도를 보여주고 있다.

다양한 $k-{\varepsilon}$ 난류모델과 Skew-Upwind 기법에 의한 단이 진 벽면분류에 대한 수치해석 (Numerical Analyses on Wall-Attaching Offset Jet with Various Turbulent $k-{\varepsilon}$ Models and Skew-Upwind Scheme)

  • 서호택;부정숙
    • 대한기계학회논문집B
    • /
    • 제24권2호
    • /
    • pp.224-232
    • /
    • 2000
  • Four turbulent $k-{\varepsilon}$ models (i.e., standard model, modified models with streamline curvature modification and/or preferential dissipation modification) are applied in order to analyze the turbulent flow of wall-attaching offset jet. For numerical convergence, this paper develops a method of slowly increasing the convective effect induced by skew-velocity in skew-upwind scheme (hereafter called Partial Skewupwind Scheme). Even though the method was simple, it was efficient in view of convergent speed, computer memory storage, programming, etc. The numerical results of all models show good prediction in first order calculations (i.e., reattachment length, mean velocity, pressure), while they show some deviations in ·second order (i.e., kinetic energy and its dissipation rate). Like the previous results obtained by upwind scheme, the streamline curvature modification results in better prediction, while the preferential dissipation modification does not.

경사충돌분류에 관한 연구 (A study on an oblique impinging jet)

  • 조용철;김광용;박상규
    • 대한기계학회논문집
    • /
    • 제14권3호
    • /
    • pp.716-724
    • /
    • 1990
  • 본 연구에서는 2차원 경사충돌분류에 대한 실험을 수행하였고, 이 결과를 수] 치해석에 의한 계산치와 비교하였다. 실험에서는 난류특성을 구명하기 위하여 열선 풍속계를 사용해 충돌각의 변화에 따른 평균속도, 각 난류응력성분, 압력등을 측정하 였다.수치해석을 위한 난류모델로는 표준 K-.epsilon.모델을 사용하였다.

온도구배를 갖는 평판에 대한 원형 충돌제트의 열전달 및 난류유동에 관한 실험적 연구 (An experimental study on the heat transfer and turbulent flow of round jet impinging the plate with temperature gradient)

  • 한충호;이계복;이충구
    • 설비공학논문집
    • /
    • 제11권6호
    • /
    • pp.855-860
    • /
    • 1999
  • An experimental study of jet impingement on the surface with linear temperature gradient is conducted with the presentation of the turbulent characteristics and the heat transfer rates measured when this jet impinges normally to a flat plate. The jet Reynolds number ranges from 30,000 to 90,000, the temperature gradient of the plate is 2~$4.2^{\circ}C$/cm and the dimensionless nozzle to plate distance(H/D) is from 6 to 10. The results show that the peak of heat transfer rate occurs at the stagnation point, and the heat transfer rate decreases as the radial distance from the stagnation point increases. A remarkable feature of the heat transfer rate is the existence of the second peak. This is due to the turbulent development of the wall jet. Maximum heat transfer rate occurs when the axial distance from the nozzle to nozzle diameter(H/D) is 8. The heat transfer rate can be correlated as a power function of Prandtl number, Reynolds number and the dimensionless nozzle to plate distance(H/D). It has been found that the heat transfer rate increases with increasing turbulent intensity.

  • PDF

다양한 $\kappa-\varepsilon$ 난류모델에 의한 단이 진 벽면 분류에 대한 수치해 (Numeical Analysis on wall-Attaching Offset Jet with Various Turbulent $\kappa-\varepsilon$ Models)

  • 윤순현
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제23권2호
    • /
    • pp.216-225
    • /
    • 1999
  • Four turbulent $k-{varepsilon}$models(i.e standard model modified models with streamline curvature modification and/or preferential dissipation modification) are applied in order to analyze the tur-bulent flow of wall-attaching offset jet. The upwind numerical scheme was adopted in the present analyses. The streamline curvature modification results in slightly better prediction while the preferential dissipation modification does not. The obtained analytic results will be used as refer-ences for further study regarding Reynolds stress model. In addition this paper introduced a method of increasing nozzle outlet velocity gradually for numercal convergence. Even though the method was simple it was efficient in view of convergent speed CPU running time computer memory storage programming etc.

  • PDF

제한면을 가지는 이차원 난류 충돌젯트의 유동 및 열전달 특성의 수치적 연구 (A Numerical Study of the Fluid Flow and Heat Transfer Characteristics of the Two-Dimensional Turbulent Impingement Jet with a Confinement Plate)

  • 강동진;오원태
    • 대한기계학회논문집
    • /
    • 제19권7호
    • /
    • pp.1675-1683
    • /
    • 1995
  • A numerical study of the fluid flow and heat transfer characteristics of the two-dimensional impingement jet with a confinement plate has been carried out. The fluid flow was calculated by solving the full Navier-Stokes equation. In doing that, the well known SIMPLER algorithm was used and the trouble making convection term was discretized according to QUICKER scheme. The energy equation was simply solved by using the SOR method. For the Reynolds number of 10000, two channel heights, say 1.5 and 3.0 times the jet exit width, and two thermal boundary conditions constant wall temperature and constant wall heat flux were considered. Discrete heat sources were flush mounted along the impingement plate at a distance of 0, 2, 3, 4, 5, 6, 10, 12, times the jet exit width from the stagnation point. The length of each heat source is 4 times the jet exit width long. The Nusselt number averaged over each heat source was compared with experiment. Comparison shows that both calculations and experiment have the secondary peak of Nusselt number at downstream of stagnation point, even though there is a little quantitative difference in between. The difference is believed due to abscure thermal boundary condition in experiment and also accuracy of turbulence model used. The secondary peak is shown to be caused by rigorous turbulent flow motion generated as the wall jet flow is retarded and developes into the channel flow without flow reversal.

이동평판에 작용하는 슬롯 충돌제트의 유동 및 열전달에 관한 수치적 연구 (A Numerical Study of Turbulent Flow and Heat Transfer due to Slot-jet impinging on a Moving flat plate)

  • 이종석;김동건;김문경;윤순현;김봉환
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회B
    • /
    • pp.2798-2803
    • /
    • 2008
  • The confined slot air jet impinging normally on a moving flat surface has been investigated numerically by using commercial CFD code Ansys CFX-V11. Turbulent flows are modeled using k-w turbulence model. Two-dimensional turbulent flow is considered. Calculations were conducted for a nozzle-to-plate spacing of eight slot nozzle width, at three Reynolds number(Re=4500, 6700 and 10,000) and four surface-to-velocity ratios i.e. 0, 0.25, 0.5 and 1. Results are compared against corresponding cases for heat transfer from a stationary plate. Local Nusselt number is calculated under constant wall temperature condition. The analysis reveals that the average Nusselt number increases considerably with the jet exit Reynolds number, but decrease with the plate velocity.

  • PDF