• Title/Summary/Keyword: Turbulent Normal Stress

Search Result 23, Processing Time 0.019 seconds

Development and validation of a non-linear k-ε model for flow over a full-scale building

  • Wright, N.G.;Easom, G.J.;Hoxey, R.J.
    • Wind and Structures
    • /
    • v.4 no.3
    • /
    • pp.177-196
    • /
    • 2001
  • At present the most popular turbulence models used for engineering solutions to flow problems are the $k-{\varepsilon}$ and Reynolds stress models. The shortcoming of these models based on the isotropic eddy viscosity concept and Reynolds averaging in flow fields of the type found in the field of Wind Engineering are well documented. In view of these shortcomings this paper presents the implementation of a non-linear model and its evaluation for flow around a building. Tests were undertaken using the classical bluff body shape, a surface mounted cube, with orientations both normal and skewed at $45^{\circ}$ to the incident wind. Full-scale investigations have been undertaken at the Silsoe Research Institute with a 6 m surface mounted cube and a fetch of roughness height equal to 0.01 m. All tests were originally undertaken for a number of turbulence models including the standard, RNG and MMK $k-{\varepsilon}$ models and the differential stress model. The sensitivity of the CFD results to a number of solver parameters was tested. The accuracy of the turbulence model used was deduced by comparison to the full-scale predicted roof and wake recirculation zone lengths. Mean values of the predicted pressure coefficients were used to further validate the turbulence models. Preliminary comparisons have also been made with available published experimental and large eddy simulation data. Initial investigations suggested that a suitable turbulence model should be able to model the anisotropy of turbulent flow such as the Reynolds stress model whilst maintaining the ease of use and computational stability of the two equations models. Therefore development work concentrated on non-linear quadratic and cubic expansions of the Boussinesq eddy viscosity assumption. Comparisons of these with models based on an isotropic assumption are presented along with comparisons with measured data.

The Comparative Study on the Fish Community in Lake Chungpyung and Lake Paldang (청평호 및 팔당호 어류군집 비교 연구)

  • Park, Hae-Kyung;Lee, Jangho;Yun, Seuk-Hwan;Choi, Myung-Jae
    • Journal of Korean Society on Water Environment
    • /
    • v.29 no.1
    • /
    • pp.7-18
    • /
    • 2013
  • We compared the structure of fish community and condition of major fish species in Lake Chungpyung and Lake Paldang, which are relatively shallow, meso-eutrophic, cascading dam reservoirs on the North Han River. Two lakes have wide littoral zone in the lakeside providing similarly good habitat for fishes, whereas fishery and water recreational activities such as motorboating, water skiing are allowed in Lake Chungpyung but are prohibited in Lake Paldang. The average lengths of large size fishes in Lake Chungpyung are shorter than those of same species in Lake Paldang, resulting in the slight distortion of generation distribution of those species in Lake Chungpyung, possibly owing to the active fishery such as fixed shore net fishing, gill net fishing and angling. Meanwhile the condition of fishes represented by the length-weight relationship of fish species did not show the significant differences between two lakes and showed normal condition. To evaluate the impact of physical disturbance such as loud noise and turbulent wave from water recreational activities to fishes precisely, further studies including physiological responses to stress an spawing activity should be needed.

A Mathematical Model of Return Flow outside the Surf Zone (쇄파대(碎波帶) 밖에서 return flow의 수학적(數學的) 모형(模型))

  • Lee, Jong Sup;Park, II Heum
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.2
    • /
    • pp.355-365
    • /
    • 1994
  • An analytical model of return flow is presented outside the surf zone. The governing equation is derived from the Navier-Stokes equation and the continuity. Each term of the governing equation is evaluated by the ordering analysis. Then the infinitesimal terms, i.e. the turbulent normal stress, the squared vertical velocity of water particle and the streaming velocity, are neglected. The driving forces of return flow are calculated using the linear wave theory for the shallow water approximation. Especially, the space derivative of local wave heights is described considering a shoaling coefficient. The vertical distribution of eddy viscosity is discussed to the customary types which are the constant, the linear function and the exponential function. Each coefficient of the eddy viscosities which sensitively affect the precision of solutions is uniquely decided from the additional boundary condition which the velocity becomes zero at the wave trough level. Also the boundary conditions at the bottom and the continuity relation are used in the integration of the governing equation. The theoretical solutions of present model are compared with the various experimental results. The solutions show a good agreement with the experimental results in the case of constant or exponential function type eddy viscosity.

  • PDF