• Title/Summary/Keyword: Turbulent Noise

Search Result 203, Processing Time 0.025 seconds

Measurement and Prediction of Aerodynamic Noise from Sirocco Fans (시로코 홴 성능 및 공력 소음 예측에 관한 연구)

  • Kim, Kyoung-Ho;Park, Kye-Chan;Lee, Seungbae
    • The KSFM Journal of Fluid Machinery
    • /
    • v.2 no.4 s.5
    • /
    • pp.57-64
    • /
    • 1999
  • The prediction method of the performance and aerodynamic noise from a sirocco fan was developed and compared with measured data. To predict the performance of the sirocco fan, the well-known slip coefficients and various loss models were tested and applied to forward curved sirocco impellers. Using loss models proposed for both impeller and casing, the predicted performance characteristics were in good agreement with measured ones by an ANSI test plenum. Various scaling models for aerodynamic noise from the sirocco fan were evaluated and tested against measured power levels in terms of flow coefficient. It was shown that the turbulent broadband sound power from the sirocco fan can be modeled successfully by trailing edge noise.

  • PDF

A study on Low-Noise and High-Efficiency Sirocco Fan Development (저소음 고효율 시로코 홴 개발에 관한 연구)

  • Park, Kwang-Jin;Lee, Sang-Hwan;Son, Byung-Jin
    • The KSFM Journal of Fluid Machinery
    • /
    • v.2 no.2 s.3
    • /
    • pp.46-56
    • /
    • 1999
  • This study is on the performance prediction and design of a sirocco fan. Slip coefficient is very important factor for the performance analysis of a centrifugal-type fan. Because generally used slip coefficient equations of backward curved centrifugal fan are not appropriate for forward curved sirocco fan, in this study a proper slip coefficient equation for a sirocco fan is suggested. Using this equation performance prediction program for sirocco fan is composed of and also included the total noise prediction that include the turbulent noise at the fan inlet and boundary layer noise. A comparison between the values obtained from performance prediction program and experimental values shows that the program predicts the sirocco fan performance in a practical rate.

  • PDF

An Aerodynamic Noise Reduction Design at Inter-coach Space of High Speed Trains Based on Biomimetic Analogy

  • Han, Jae-Hyun;Kim, Jung-Soo
    • International Journal of Railway
    • /
    • v.4 no.3
    • /
    • pp.74-79
    • /
    • 2011
  • Recent years have witnessed speed up of moving vehicles such as high-speed of trains. Increase in speed entails concomitant increase in turbulent air flow which contributes toward increased aerodynamic noise. The proposed method for aerodynamic noise reduction is based on a biomimetic design of owl feather. The five morphological parameters of the owl feather are extracted from close observation, and simulation cases are constructed by applying design of experiments methodology. Swirling strength for each case is obtained through steady-state CFD analysis, and key morphological parameters that affect the turbulence are identified. Large eddy simulations (LES) are then performed on selected cases to predict the air turbulence. Different cases show varying vortex distributions which are expected to lead to varying aerodynamic noise levels.

A study on low-noise and high-efficiency sirocco fan development (저소음 고효율 시로코 팬 개발에 관한 연구)

  • Park, K.J.;Lee, S.H.;Son, B.J.
    • 유체기계공업학회:학술대회논문집
    • /
    • 1998.02a
    • /
    • pp.63-72
    • /
    • 1998
  • This study Is on the performance prediction and design of sirocco fan. Slip coefficient is very important factor for the performance analysis of centrifugal-type fan. Because generally used slip coefficient equations of backward curved centrifugal fan are not appropriate for forward curved sirocco fan, in this study a proper slip coefficient equation for sirocco fan is suggested. Using this equation performance prediction program for sirocco fan is composed and also included the total noise prediction that include turbulent noise at the fan Inlet and boundary layer noise. A comparison between the values obtained from performance prediction program and experimental values shows that the program predicts the sirocco fan performance in a practical rate.

  • PDF

THE RANDOM SIGNALS SATISFYING THE PROPERTIES OF THE GAUSSIAN WHITE NOISE

  • Moon, Byung-Soo;Beasley, Leroy B.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.9 no.1
    • /
    • pp.9-16
    • /
    • 2005
  • The random signals defined as sums of the single frequency sinusoidal signals with random amplitudes and random phases or equivalently sums of functions obtained by adding a Sine and a Cosine function with random amplitudes, are used in the double randomization method for the Monte Carlo solution of the turbulent systems. We show that these random signals can be used for studying the properties of the Johnson noise by proving that constant multiples of these signals with uniformly distributed frequencies in a fixed frequency band satisfy the properties of the Gaussian white noise.

  • PDF

Performance predictions and acoustic analysis of the HVAB rotor in hover

  • Mali, Hajar;Benmansour, Kawtar;Elsayed, Omer;Qaissi, Khaoula
    • Advances in aircraft and spacecraft science
    • /
    • v.9 no.4
    • /
    • pp.319-333
    • /
    • 2022
  • This work presents a numerical investigation of the aerodynamics and aero acoustics of the HVAB rotor in hover conditions. Two fully turbulent models are employed, the one-equation Spalart-Allmaras model and the two-equation k-ω SST model. Transition effects are investigated as well using the Langtry-Menter γ-Re θt transition transport model. The noise generation and propagation are being investigated using the Ffows-Williams Hawking model for far-field noise and the broadband model for near-field noise. Comparisons with other numerical solvers and with the PSP rotor test data are presented. The results are presented in terms of thrust and power coefficients, the figure of merit, surface pressure distribution, and Sound pressure level. Velocity, pressure, and vortex structures generated by the rotor are also shown in this work. In addition, this work investigates the contribution of different blade regions to the overall noise levels and emphasizes the importance of considering specific areas for future improvements.

DESIGN FOR AERODYNAMIC NOISE REDUCTION OF RAILWAY TRACTION MOTOR USING LBM (격자볼츠만기법을 이용한 전동차용 견인전동기 공력소음 저감 설계)

  • Kim, J.H.;Ki, H.C.;Byun, S.J.;Rho, J.H.
    • Journal of computational fluids engineering
    • /
    • v.22 no.1
    • /
    • pp.103-109
    • /
    • 2017
  • The aerodynamic noise reduction of railway traction motor is required to satisfy new enhanced Korean noise regulations for a train. This paper is the study result on a noise reduction of a railway traction motor using Lattice Boltzmann Method(LBM). To verify the reliability of numerical analysis, the noise performance of the base model evaluated using LBM, and calculated result was compared with the experimental data. In addition, main noise sources were selected to design parameters through analyzing the flow field of the base model. Based on the noise sources analysis result, a design improvement model of traction motor for this study was derived to reduce the noise. The performance of a design improvement model was evaluated by applying a validated numerical scheme. As a result, it was confirmed that the noise was reduced due to the suppression of the internal turbulent flow components.

Experimental Investigation of Noise Generation from the Inter-coach Spacing of a High-speed Train (고속열차의 차간 공간에서 발생하는 소음 특성의 시험적 규명)

  • Choi, Sung-Hoon;Park, Choon-Soo;Park, Jun-Hong;Kim, Sang-Soo
    • Journal of the Korean Society for Railway
    • /
    • v.10 no.6
    • /
    • pp.786-791
    • /
    • 2007
  • Aerodynamically generated noise is dominant when the train speed approaches 300km/h. This noise sources is caused by the turbulent flow separations or vortex shedding from the train structure. Experiments were performed to investigate the characteristics of aerodynamic noise sources generated from exterior of the KTX trains and HSR-350x, especially from the inter-coach spacing. Measurements of both the inside and outside of the cabin are carried out to investigate the characteristics of the noise. Effect of the size of the mud-flap has been investigated through an wind tunnel test and it has been found that the low frequency noise is strongly dependent on the size of the gap. Also performed is an array measurement to locate different noise sources from the high-speed train. spectral characteristics of exterior noise sources are examined.

An Experimental Study on the Supersonic Jet Noise from Multihole (다공 초음속 분류소음에 관한 실험적 연구)

  • Kwon, Y.P.;Suh, K.W.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.4 no.2
    • /
    • pp.96-105
    • /
    • 1992
  • The objective of this paper is to study experimentally on the noise characteristics of supersonic jet from multihole orifice in the range of jet pressure from $at_g$ to $at_g$ in the reverberation room. At first, the single orifice jets are investigated for various hole diameter from 3.8mm to 10mm. Through the noise spectrum, the turbulent mixing noise and the shock associated noise is analyzed. The noise for confined jets into a tube of diameter 30mm or 90mm with length 2m is investigated in comparision with that for the free jets. The sound power level is measured and compared with thoretical models for free jet. At second, multihole orifice jets are investigated to study the effect of multijet on noise reduction. The spectrum and power level of multijets are measured and compared with single jets. The multi-jets in a confined pipe are also investigated. It is found that the noise spectrum is significantly altered by increasing the number of jet with decrease in jet diameter and also by confining the jet into tube.

  • PDF

Time-domain Computation of Broadband Noise due to Turbulence - cascade Interaction (난류-캐스케이드 상호 작용에 의한 광대역 소음장의 시간영역 계산)

  • Jung, Sung-Soo;Cheung, Wan-Sup;Lee, Soo-Gab;Cheong, Cheol-Ung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.3 s.108
    • /
    • pp.263-269
    • /
    • 2006
  • The objective of the present work is to develop a time-domain numerical method of broadband noise in a cascade of airfoils. This paper focuses on dipolar broadband noise sources, resulting from the interaction of turbulent inflows with the flat-plate airfoil cascade. The turbulence response of a two-dimensional cascade is studied by solving both of the linearised and the full nonlinear Euler equations employing accurate higher order spatial differencing, time stepping techniques and non-reflecting inflow/outflow boundary condition. The time-domain result using the linearised Euler equations shows good agreement with the analytical solution using the modified LINSUB code. Through the comparison of the nonlinear time-domain result using the full nonlinear Euler equations with the linear, it is found that the acoustic mode amplitude of the nonlinear response is less than that of the linear response due to the energy cascade from low frequency components to the high frequency ones. Considering the merits of the time-domain methods over the typical time-linearised frequency-domain analysis, the current method is expected to be promising tools for analyzing the effects of the airfoil shapes, non-uniform background flow, linear-nonliear regimes on the broadband noise due to turbulence-cascade interaction.