• Title/Summary/Keyword: Turbulent Mixing

Search Result 422, Processing Time 0.026 seconds

Characteristics of Bubble-driven Flow by Using Time-resolved PIV and POD Technique (Time-resolved PIV와 POD기법을 이용한 단일노즐 버블링 유동 특성에 관한 연구)

  • Yi, Seung-Jae;Kim, Jong-Wook;Kim, Hyun-Dong;Kim, Kyung-Chun
    • Journal of the Korean Society of Visualization
    • /
    • v.6 no.1
    • /
    • pp.41-46
    • /
    • 2008
  • In this paper, the recirculation flow motion and mixing characteristics driven by air bubble stream in a rectangular water tank is studied. The time-resolved PIV technique is adopted for the quantitative visualization and analysis. 488 nm Ar-ion CW laser is used for illumination and orange fluorescent ($\lambda_{ex}=540nm,\;\lambda_{em}=560nm$) particle images are acquired by a PCO 10bit high-speed CCD camera (1280$\times$1024). To obtain clean particle images, 545 nm long pass optical filter and an image intensifier are employed and the flow rates of compressed air is 3 l/min at 0.5 MPa. The recirculation and mixing flow field is further investigated by time-resolved POD analysis technique. It is observed that the large scale recirculation resulting from the interaction between rising bubble stream and side wall is the most dominant flow structure and there are small scale vortex structures moving along with large scale recirculation flow. It is also verified that the sum of 20 modes of velocity field has about 67.4% of total turbulent energy.

An Experimental Study on the Turbulence Characteristics of a Cross Jet with Respect to Cross Angle Variations (충돌분사의 충돌각 변화에 따른 난류특성의 실험적 연구)

  • 노병준;최진철;강신재
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.5
    • /
    • pp.991-998
    • /
    • 1989
  • This investigation was carried out for the purpose of studying the turbulent flow and mixing characteristics after collision of two jets depending upon the cross angle variations. For effectuating this experimental study, a subsonic wind tunnel and a constant temperature type two channel hot-wire anemometer system have been utilized. The jets issuing from two nozzles have same Reynolds numbers and their cross angle was variable. After collision of two jets, the cross section of the mixing flow, mean and fluctuating velocities and Reynolds stresses have been measured, and analyzed comparing them with semi-empirical equations. It was found that the nondirectional contour of the cross section agreed well with an elliptic formula and the mean velocities along the centerline had a good similarity independent of cross angle variations. The distributions of U over bar-components measured in the Y direction have a good similarity and agree well with semi-empirical equations of Hinze and Gortler. The Reynolds stresses of u'v' over bar on the Y axis show a similar distributions and their agreement with the theoretical curve is remarkable but those of u'w' over bar measured along the Z axis are randomly scattered.

Study of the Supersonic Ejector-Diffuser System with a Mixing Guide Vane (혼합 안내깃을 적용한 초음속 이젝터-디퓨져 시스템에 대한 연구)

  • Kong, Fanshi;Jin, Yingzi;Kim, Heuydong
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.17 no.1
    • /
    • pp.52-60
    • /
    • 2013
  • Ejector-diffuser system makes use of high-pressure primary stream to entrain the low-pressure secondary stream through pure shear action between two streams. In general, the flow field in the ejector-diffuser system is highly complicated due to turbulent mixing, compressibility effects. A fatal drawback of the ejector system is in its low efficiency. Many works have been done to improve the performance of the ejector system, but not yet satisfactory. In the present study, a mixing guide vane was installed at the inlet of the secondary stream for the purpose of the performance improvement of the ejector system. A CFD method has been applied to simulate the supersonic flows inside the ejector-diffuser system. The present results obtained were validated with existing experimental data. The mixing guide vane effects are discussed in terms of the entrainment ratio, total pressure loss as well as pressure recovery.

The Numerical Analysis by the Change on the Length-Height Ratio of 2D Cavity in Supersonic Combustor (수치해석을 이용한 초음속 연소기 내의 2차원 Cavity의 종횡비 변화에 대한 혼합특성 비교연구)

  • Seo, Hyung-Seok;Kim, Ki-Su;Jeon, Young-Jin;Byun, Yung-Hwan;Lee, Jae-Woo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.04a
    • /
    • pp.81-86
    • /
    • 2007
  • The air velocity flowing in inner combustion chamber of Scramjet is supersonic and the time of its stay is very short as a few milliseconds. Within this short time, fuel injection, air-fuel mixing, and combustion process should be accomplished. Several methods are suggested for mixing enhancement. Among these, cavity is selected to study for enhancement of mixing. The numerical simulation is performed in the case of freestream Mach number of 2.5 and cavity located in front of fuel jet injection. 8 different sized cavities of length-height ratio were used in order to recognize the effect about cavity size. Also, the case without cavity was analyzed to find the effect of cavity. Used code compared with the result of experiment under identical conditions and it was verified. Through this comparison and verification, mixing enhancement by cavity could be confirmed.

  • PDF

Time-split Mixing Model for Analysis of 2D Advection-Dispersion in Open Channels (개수로에서 2차원 이송-분산 해석을 위한 시간분리 혼합 모형)

  • Jung, Youngjai;Seo, Il Won
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.2
    • /
    • pp.495-506
    • /
    • 2013
  • This study developed the Time-split Mixing Model (TMM) which can represent the pollutant mixing process on a three-dimensional open channel through constructing the conceptual model based on Taylor's assumption (1954) that the shear flow dispersion is the result of combination of shear advection and diffusion by turbulence. The developed model splits the 2-D mixing process into longitudinal mixing and transverse mixing, and it represents the 2-D advection-dispersion by the repetitive calculation of concentration separation by the vertical non-uniformity of flow velocity and then vertical mixing by turbulent diffusion sequentially. The simulation results indicated that the proposed model explains the effect of concentration overlapping by boundary walls, and the simulated concentration was in good agreement with the analytical solution of the 2-D advection-dispersion equation in Taylor period (Chatwin, 1970). The proposed model could explain the correlation between hydraulic factors and the dispersion coefficient to provide the physical insight about the dispersion behavior. The longitudinal dispersion coefficient calculated by the TMM varied with the mixing time unlike the constant value suggested by Elder (1959), whereas the transverse dispersion coefficient was similar with the coefficient evaluated by experiments of Sayre and Chang (1968), Fischer et al. (1979).

Temporal and Spatial Variations of Temperature and Salinity around Ganjeol Point in the Southeast Coast of Korea (한국 남동해 간절곶 주변해역의 열염구조와 시공간적 변동 특성)

  • Choo, Hyo-Sang;Jang, Duck-Jong
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.20 no.5
    • /
    • pp.474-485
    • /
    • 2014
  • Temporal and spatial variations of temperature and salinity around Ganjeol Point during January, April, August and November 2011 were studied using the data from CTD observations and temperature monitoring buoys deployed at 20 stations in the southeast coast of Korea. Temperature and salinity were nearly homogeneous through the whole depth by mixing of the seawater in spring and winter related to the sea surface cooling. Stratification induced by the river runoff and the bottom cold water was clear in summer. In autumn, sea water had vertical mixing initiated from surface layer and weak stratification at the middle and bottom layers. Low temperature and high salinity emerged throughout the year near Ganjeol Point, which inferred from turbulent mixing and upwelling by its topographical effect. Major periods of 1/4~1.4 day temperature fluctuations were recorded for the most part of the stations. According to the cross spectral density analysis, high coherence and small time lag for temperature fluctuation between layers were shown at Ganjeol Point. However, those features at the northen area of Hoeya river were opposed to Ganjeol Point. From analyses, thermohaline structure and its fluctuation around Ganjeol Point were characterized into those three parts, the south of Ganjeol Point, Ganjeol Point and the north of Ganjeol Point.

A Study on the Aerodynamic Noise of a Supersonic Exhaust Nozzle of Slotted Tube (슬롯관형 초음속 배기노즐의 공력소음에 관한 연구)

  • Lee, Dong-Hoon;Seto, Kunisato
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.1
    • /
    • pp.132-142
    • /
    • 2000
  • The objective of this study is to experimentally investigate the noise propagating characteristics, the noise reduction mechanism and the performance of a slotted tube attached at the exit plane of a circular convergent nozzle. The experiment is performed through the systematic change of the jet pressure ratio and the slot length under the condition of two kinds of open area ratios, 25% and 51%. The open area ratio calculated by the tube length equivalent for the slot length is defined as the ratio of the total slot area to the surface area of a slotted tube. The experimental results for the near and far field sound, the visualization of jet structures and the static pressure distributions in the jet passing through a slotted tube are presented and explained in comparison with those for a simple tube. The propagating characteristics of supersonic jet noises from the slotted tube is closely connected with the slot length rather than the open area ratio, and its propagating pattern is similar to the simple tube. It is shown that the slotted tube has a good performance to suppress the shock-associated noise as well as the turbulent mixing noise in the range of a limited jet pressure and slot dimension. The considerable suppression of the shock‘associated noise is mainly due to the pressure relief caused by the high-speed jets passing through the slots on the tube. Both the strength of shock waves and the interval between them in a jet plume are decreased by the pressure relief. Moreover, the pressure relief is divided into the gradual and the sudden relief depending upon the open area ratio of the slotted tube. Consequently, the shock waves in a jet plume are also changed by the type of pressure relief. The gradual pressure relief caused by the slotted tube with the open area ratio 25% generates the weak oblique shock waves. On the contrary, the weak normal shock waves appear due to the sudden pressure relief caused by the slotted tube with the open area ratio 51%.

Study on the Statistical Turbulent Characteristics of $45^{\circ}$ Circular Cross Jet Flow ($45^{\circ}$ 圓形 衝突噴流의 統計學的 亂流特性 硏究)

  • 노병준;김장권
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.10 no.1
    • /
    • pp.110-120
    • /
    • 1986
  • 45.deg. corss jet flow, at the mixing of two jet flows, was experimentally studied. For this study, only the statistical turbulent characteristics and high order moments will be analysed by on-line computer system (hot-wire anemometer system, dynamic analyser and computer system, plotting and printing system). Since mean velocity distributions, intensities of turbulence, Reynolds stresses, correlation coefficients, and other general results were already studied and presented. One dimensional probability density distributions of u', v', and w' were analysed comparing with Gaussian curve, which showed skew and flat tendency according to the Y and Z directions. For the analysis of the joint flow of turublent components, the joint probability density distributions were examined. The fagures were drawn so as to be read joint probabilities, joint probability densities, fluctuating velocities u', v', and w'. For further detailed examination of the variations of skewness and flatness phenomena, iso-joint probability density contours obtained from the profiles of the joint probability density distributions were studied. According to the displacement of positions from the center of the mixing flow and the directions, the flatness and skewness factors were increased.

Large-scale structure of circular jet in transitional region at reynolds number of ${10}^{4}$ (Reynolds수 ${10}^{4}$일때 천이영역에서의 왼형제트의 Large-Scale 구조에 관한 연구)

  • 이택식;최은수
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.10 no.6
    • /
    • pp.823-829
    • /
    • 1986
  • The Large-scale structure of the circular jet in the transition region, which influences the subsequent flow in the turbulent region, was studied experimentally. Measuring equipments are composed of the two channel hot-wire anemometer, the computer controlled two-directional traverse mechanism, the data acquisition system, and FFT-analyzer. The circular jet has 50mm diameter. The mean velocity distribution, the velocity fluctuation, the auto 'cross correlations and the power spectra were acquired at moderate Reynolds number of 10$^{4}$. And the VITA method was used to measure the convection velocity of Large-scale eddy. The phase of u'is in advance of that of v'in all regions. .over bar. $R_{u}$(.tau.=0) is approximately zero in the potential core region, but a small regular deviation is observed. At a position in the mixing layer region the convection velocity is different along the part of the eddy, and in this experiment the convection velocity of the inner region is larger than the outer region. The averge convection velocity of the eddy along y/D=0 was approximately constant in the transition region.D=0 was approximately constant in the transition region.

LES for Turbulent Duct Flow with Surface Mass Injection (질량분사가 있는 덕트 난류유동의 LES 해석)

  • Kim, Bo-Hoon;Na, Yang;Lee, Chang-Jin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.3
    • /
    • pp.232-241
    • /
    • 2011
  • The hybrid rocket shows interesting characteristics of complicated mixing layer developed by the interaction between turbulent oxidizer flow and injected surface mass flow from fuel vaporization. In this study, the compressible LES was conducted to explore the physical phenomena of surface oscillatory flow induced by the flow interferences in a duct domain. From the numerical results, the wall injection generates the stronger streamwise vorticites and the negative components of axial velocity accompanied with the azimuthal vorticity near the surface. And the vortex shedding with a certain time scale was found to be developed by hydrodynamic instability in the mixing layer. The pressure fluctuations in this calculation exhibit a peculiar peak at a specific angular frequency($\omega$=8.8) representing intrinsic oscillation due to the injection.