• Title/Summary/Keyword: Turbulent Mixing

Search Result 422, Processing Time 0.025 seconds

A Study on the Turbulent Characteristics of Rushton Turbine Mixer by Simultaneous Measurement of Velocity and Concentration Field with Stereo-PIV/PLIF Technique (Stereo-PIV/PLIF의 속도장과 농도장 동시측정 기법을 이용한 러쉬톤 교반기내 난류특성에 관한 연구)

  • Min, Young-Uk;Kim, Yun-Gi;Kim, Kyung-Chun
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.694-699
    • /
    • 2003
  • Simultaneous measurement with PLIF(Planar Laser-Induced Fluorescence) and Stereo-PIV(Stereoscopic Particle Image Velocimetry) was performed to investigate the structural characteristics of flow field in Rushton Turbine Mixer. Instantaneous 3D velocity fields are measured by two 2K ${\times}$ 2K CCD cameras focused on an object plane with the angular displacement methods while the concentration fields are obtained through the measurement of the fluorescence intensity of Rhodamine B tracer excited by the second pulse of Nd:Yag laser light. Image distortion due to the camera view-angle is compensated by a mapping function. Finally, the spatial structures of turbulent mixing around Rushton turbine were identified by the calculation of cross-correlation fields between the velocity and concentration field.

  • PDF

Numerical Simulation of Chemically Reacting Shock Wave-Turbulent Boundary Layer Interactions (화학반응이 있는 난류경계층과 충격파의 상호작용에 대한수치해석)

  • Mun, Su-Yeon;Lee, Chung-Won;Son, Chang-Hyeon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.3
    • /
    • pp.375-383
    • /
    • 2002
  • The flowfield of transverse jet in a supersonic air stream subjected to shock wave turbulent boundary layer interactions is simulated numerically by Generalized Taylor Galerkin(GTG) finite element methods. Effects of turbulence are taken into account with a two-equation (k-$\varepsilon$) model with a compressibility correction. Injection pressures and slot widths are varied in the present study. Pressure, separation extents, and penetration heights are compared with experimental data. Favorable comparisons with experimental measurements are demonstrated.

Hydraulic Characteristics of HANARO Fuel Bundles

  • Cho, S.;Chung, H.J.;Chun, S.Y.;Yang, S.K.;Chung, M.K.
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1997.10a
    • /
    • pp.501-506
    • /
    • 1997
  • This paper presents the hydraulic characteristics measured by using LDV(Laser Doppler Velocimetry) in subchannels of a HANARO, KAERI research reactor, fuel bundle. The fuel bundle consists of 18 axially finned rods with 3 spacer grids, which are arranged in cylindrical configuration. The effects of the spacer grids on the turbulent flow were investigated by the experimental results. Pressure drops fer each component of the fuel bundle were measured, and the friction factors of fuel bundle and loss coefficients for the spacer grids were estimated from the measured pressure drops. Implications regard ins the turbulent thermal mixing were discussed. Vibration test results measured by using laser vibrometer were presented.

  • PDF

Axisymmetric Thick Turbulent Boundary Layer Around a Rotating Body of Revolution (회전하는 회전체 주위의 축대칭 두꺼운 난류경계층 연구)

  • Shin-Hyoung,Kang;Jung-Ho,Hwang
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.23 no.1
    • /
    • pp.13-22
    • /
    • 1986
  • Axisymmetric turbulent thick boundary layers on a rotating body of revolution are calculated numerically in the paper. Richardson number is introduced to the mixing length to take account of swirl effects on Reynolds stresses. Interactions of the boundary layer and the external potential flow are included by adding the displacement thickness of boundary layers on the original body. Pressure distributions on the body surface are estimated by integrating normal momentum equation across the boundary layer. A model is designed and tested in the wind tunnel. Mean velocities are measured. Through the present study, swirl effects on the thick axisymmetric boundary layer development are considerable in comparison with those of non-totating cases. Rotational motion generally increase boundary layer thickness, axial skin friction coefficients, and form drags. Circumferential flow can be reversed to induce negative skin friction when the section area is reduced.

  • PDF

Numerical Study of slot injection behind a rearward-facing step into turbulent supersonic flow (초음속난류유동장에서 후향계단 후류의 측면제트분사에 대한 수치적 연구)

  • Kim J.R.;Kim J.S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2002.05a
    • /
    • pp.17-22
    • /
    • 2002
  • This paper describes numerical research on transverse jet behind rearward-facing step in turbulent supersonic flowfields without chemical reaction. The purpose of transverse jet behind rearward-facing step is to improve mixing of the fuel in the combustor. Two-dimensional unsteady flowfields generated by slot injection into supersonic flow are numerically simulated by integration of Navier-Stokes equation. Final-scale turbulence effects are modeled with two-equation $\kappa-\epsilon$ model. Numerical methods are modeled high-order upwind TVDschemes. A total of 4 cases are computed, comprising slot momentum flux ratios at four step heights downstream of the step. These numerical results are represented periodic phenomenon in unsteady flowfields.

  • PDF

CFD study of the PTS experiment in ROCOM test facility

  • Carija, Zoran;Ledic, Fran;Sikirica, Ante;Niceno, Bojan
    • Nuclear Engineering and Technology
    • /
    • v.52 no.12
    • /
    • pp.2803-2811
    • /
    • 2020
  • With the aging of nuclear reactors, embrittlement of the reactor pressure vessel (RPV) steel, as a consequence of routine operations, is highly probable. To ensure operational integrity and safety, prediction and mitigation of compromising damage, brought on by pressurized thermal shock (PTS) following an emergency procedure, is of utmost importance. Computational fluid dynamics (CFD) codes can be employed to predict these events and have therefore been an acceptable method for such assessments. In this paper, CFD simulations of a density driven ECC state in the ROCOM facility are analyzed. Obtained numerical results are validated with the experimental measurements. Considerable attention is attributed to the boundary conditions and their influence, specifically outlet definitions, in order to determine and adequately replicate the non-active pumps in the facility. Consequent analyses focused on initial conditions as well as on the temporal discretization and inner iterations. Disparities due to different turbulent modelling approaches are investigated for standard RANS models. Based on observed trends for different cases, a definitive simulation setup has been established, results of which have been ultimately compared to the measurements.

Mixing Characteristics in Supersonic Combustor with a Cavity (Cavity를 이용한 초음속 연소기 내의 혼합특성)

  • Oh Juyoung;Bae Young-Woo;Kim Ki-Su;Jeon Young-Jin;Lee Jae-Woo;Byun Yung-Hwan
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • v.y2005m4
    • /
    • pp.359-363
    • /
    • 2005
  • In SCRamjet engine, combustion occurs in supersonic flow with airbreathing. SCRamjet is characterized by very short combustion time in combustor, so it is very important to be mixing the air and fuel in short duration. Several methods are suggested for mixing enhancement. Among these, cavity is selected to study for enhancement of mixing. The numerical simulation is performed in the case of freestream Mach number of 2.5 and cavity located in front of fuel jet injection. CFD-Fastran, commercial code with three-dimensional Navier-Stokes equation with the Menter SST turbulence model were used. The results are obtained validate experiment results for same condition. Therefore, the numerical results show the mixing enhancement characteristics with a cavity.

  • PDF

The Numerical Analysis Study about the Air-Fuel Mixing Characteristics by the Change on the 3D Cavity Size (3차원 Cavity 크기 변화에 의한 공기-연료 혼합특성의 수치적 해석 연구)

  • Seo, Hyung-Seok;Jeon, Young-Jin;Byun, Yung-Hwan;Lee, Jae-Woo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.93-98
    • /
    • 2007
  • The air velocity flowing in inner combustion chamber of SCramjet is supersonic and the time of its stay is very short as a few milliseconds. Within this short time, fuel injection, air-fuel mixing, and combustion process should be accomplished. Several methods are suggested for mixing enhancement. Among these, cavity is selected to study for mixing characteristics. The numerical simulation is performed in the case of freestream Mach number of 2.5 and cavity located in front of fuel jet injection. 3 different sized cavities of the same length-height ratio were used in order to recognize the effect about cavity size. Also, the case without cavity was analyzed to find the effect of cavity. Used code compared with the result of experiment under identical conditions and it was verified. Through this comparison and verification, mixing enhancement by cavity size could be confirmed.

  • PDF

The Effect of Aerated Oil Considering Live Oil Surface Tension on High-Speed Journal Bearing

  • Chun, Sang-Myung
    • KSTLE International Journal
    • /
    • v.2 no.2
    • /
    • pp.103-113
    • /
    • 2001
  • The influence of aerated oil on high-speed journal bearing is examined by classical thermohydrodynamic lubrication theory coupled with analytical models for viscosity and density of air-oil mixture in fluid-film bearing. Convection to the walls and mixing with supply oil and re-circulating oil are considered. The live oil surface tension is considered as functions of temperature, API gravity and air volume ratio. With changing eccentricity ratio, it is investigated the effects of air bubbles on the performance of a high-speed plain journal bearing. Just at the moderate eccentricity ratios, even if the involved aeration levels are not so severe and the entrained air bubble sizes are not so small, it is found that the bearing load and friction farce may be changed so visibly for the high speed bearing operation.

  • PDF

HOT CHANNEL ANALYSIS CAPABILITY OF THE BEST-ESTIMATE MULTI-DIMENSIONAL SYSTEM CODE, MARS 3.0

  • JEONG J.-J.;BAE S. W.;HWANG D. H.;LEE W. J.;CHUNG B. D.
    • Nuclear Engineering and Technology
    • /
    • v.37 no.5
    • /
    • pp.469-478
    • /
    • 2005
  • The subchannel analysis capability of MARS, a multi-dimensional thermal-hydraulic system code, has been enhanced. In particular, the turbulent mixing and void drift models for the flow-mixing phenomena in rod bundles were improved. Then, the subchannel analysis feature was combined with the existing coupled system thermal-hydraulics (T/H) and 3D reactor kinetics calculation capability of MARS. These features allow for more realistic simulations of both the hot channel behavior and the global system T/H behavior. Using the coupled features of MARS, a coupled analysis of a main steam line break (MSLB) is carried out for demonstration purposes. The results of the calculations are very reasonable and promising.