• Title/Summary/Keyword: Turbulent Jet

Search Result 460, Processing Time 0.024 seconds

An Experimental Study of the Characteristics with High Temperature Air Combustion in Jet Diffusion Flames (제트확산염의 고온공기연소특성에 관한 실험적 연구)

  • Cho, Eun-Seong;Ohno, Ken;Kobayashi, Hideaki;Chung, Suk-Ho
    • 한국연소학회:학술대회논문집
    • /
    • 2003.12a
    • /
    • pp.89-94
    • /
    • 2003
  • For the development of high efficiency and low emission combustion systems, high temperature air combustion technology has been tested by utilizing preheated air over 1100 K and exhaust gas recirculation. In this system, combustion air is diluted with large amount of exhaust gases ($N_2$, $CO_2$), such that the oxygen concentration is relatively low in the reaction zone, leading to low flame temperature. Since, the temperature fluctuations and sound emissions form the flame are small and flame luminosity is low, the combustion mode is expected to be flameless or mild combustion. Experiment was performed to investigate the turbulent flame structure and $NO_X$ emission characteristics in the high temperature air combustion focused on coflowing jet diffusion flames which has a fundamental structure of many practical combustion systems. The effect of turbulence has also been evaluated by installing perforated plate in the oxidizer inlet nozzle. LPG was used as a fuel. Results showed that even though $NO_X$ emission is sensitive to the combustion air temperature, the present high temperature air combustion system produce low $NO_X$ emission because it is operated in low oxygen concentration condition in excess of dilution.

  • PDF

Development of Digital Holographic PIV Technique and Its Application (Digital Holographic PIV 기법의 개발과 제트유동에의 응용)

  • Kim, Seok;Lee, Sang-Joon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.1 s.232
    • /
    • pp.123-130
    • /
    • 2005
  • A digital in-line holographic particle image velocimetry (HPIV) which can be applied to measure three-dimensional velocity fields of turbulent flows was developed. There are three different implementation methods of HPIV: traditional film-based HPIV, intermediate HPIV and digital HPIV. The traditional film-based HPIV and intermediate HPIV method is rather troublesome to do experiments and takes long calculation time, compared with the digital HPIV, Configuration of the digital in-line HPIV is simple and the data processing routine is similar to conventional 2D PIV methods. The digital HPIV velocity field measurement consists of four steps: recording, numerical reconstruction, particle extraction and velocity extraction. In the velocity extraction process, we improved PTV algorithm to extract the displacement of particle each placed in 3D space. The developed digital in-line HPIV system was applied to a vertical jet flow. The 3D velocity vectors measured by the digital HPIV method in the near field are in a good agreement with 2D PIV results.

Numerical Models for the Surface Discharge of Heated Water : Comparative Evaluation of Jet Integral Models. (표면온배수 수치모형 : 제트적분모델의 비교평가)

  • 최흥식;이길성
    • Water for future
    • /
    • v.23 no.4
    • /
    • pp.487-497
    • /
    • 1990
  • The qualitative and quantitative prediction for the dispersion of thermal discharge from nuclear / fossil power plant, steel works etc. has significant roles for the cooling system. Design and environmental management. In this study, the several important physical properties for the behavior of a thermal discharge with strong turbulent and buoyant effects are described. The comparative evaluation between MIT and PDS models is carried out, which have the different model structures. In general, MIT and PDS models are commonly used to calculate the thermal discharge behavior with considering the ambient current and the angle of jet in an unstratified water body. The simulated results by these models have great discrepancies due to the different assumptions in modling.

  • PDF

The Effect of Flame Radiation on NOx Emission Characteristics in Hydrogen Thrbulent Diffusion Flames (수소 난류확산화염에서 NOx 생성특성에 대한 화염열복사의 영향)

  • Kim, Seung-Han;Kim, Mun-Ki;Yoon, Young-Bin
    • Journal of the Korean Society of Combustion
    • /
    • v.5 no.2
    • /
    • pp.51-62
    • /
    • 2000
  • The relationship among the flame radiation, NOx emissions, residence time, and global strain rate are examined for turbulent non-premixed jet flames with wide variations in coaxial air conditions. Measurements of NOx emission, flame geometry and flame radiation were made to explain the NOx emission scaling based on global parameters such as flame residence time, global strain rate, and radiant fraction. The overall 1/2-power scaling is observed in coaxial air flames, irrespective of coaxial air conditions, but the degree of deviation from the 1/2-slope curve in each case differs from one another. From the comparison between the results of pure hydrogen flames and those of helium diluted hydrogen flames, it is observed that flame radiation plays a significant role in pure hydrogen flames with coaxial air and the deviation from 1/2-power scaling may be explained in two reasons: the difference in the flame radiation and the difference in jet similarity in coaxial air flames. From the radiation measurements, more detailed explanations on these deviations were suggested.

  • PDF

An Experimental Study on the Turbulence Characteristics of a Cross Jet with Respect to Cross Angle Variations (충돌분사의 충돌각 변화에 따른 난류특성의 실험적 연구)

  • 노병준;최진철;강신재
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.5
    • /
    • pp.991-998
    • /
    • 1989
  • This investigation was carried out for the purpose of studying the turbulent flow and mixing characteristics after collision of two jets depending upon the cross angle variations. For effectuating this experimental study, a subsonic wind tunnel and a constant temperature type two channel hot-wire anemometer system have been utilized. The jets issuing from two nozzles have same Reynolds numbers and their cross angle was variable. After collision of two jets, the cross section of the mixing flow, mean and fluctuating velocities and Reynolds stresses have been measured, and analyzed comparing them with semi-empirical equations. It was found that the nondirectional contour of the cross section agreed well with an elliptic formula and the mean velocities along the centerline had a good similarity independent of cross angle variations. The distributions of U over bar-components measured in the Y direction have a good similarity and agree well with semi-empirical equations of Hinze and Gortler. The Reynolds stresses of u'v' over bar on the Y axis show a similar distributions and their agreement with the theoretical curve is remarkable but those of u'w' over bar measured along the Z axis are randomly scattered.

Effect of Damkohler Number on Vortex-Heat Release Interaction in a Dump Combustor (덤프 연소기내의 와류-열방출의 관계에 대한 Damkohler 수의 영향)

  • Yu Kenneth H;Yoon Youngbin;Ahn Kyubok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.10a
    • /
    • pp.137-140
    • /
    • 2004
  • Oscillating heat release associated with periodic vortex-flame interaction was investigated experimentally. Turbulent jet flames were stabilized with recirculating hot products in a dump combustor, and large-scale periodic vortices were imposed into the jet flame by acoustic forcing. Forcing frequencies and operating parameters were adjusted to simulate unstable combustor operation in practical combustors. The objectives were to characterize vortex-heat release interaction that leads to unwanted heat release fluctuations and to identify the proper fuel injection pattern that could be used for actively suppressing such fluctuations. Phase-resolved CH* chemiluminescence and schlieren images were used as diagnostic tools. The results were compared at corresponding phases of vortex shedding cycle.

  • PDF

Numerical simulation of air discharged in subcooled water pool

  • Y. Cordova ;D. Blanco ;Y. Rivera;C. Berna ;J.L. Munoz-Cobo ;A. Escriva
    • Nuclear Engineering and Technology
    • /
    • v.55 no.10
    • /
    • pp.3754-3767
    • /
    • 2023
  • Turbulent jet discharges in subcooled water pools are essential for safety systems in nuclear power plants, specifically in the pressure suppression pool of boiling water reactors and In-containment Refueling Water Storage Tank of advanced pressurized water reactors. The gas and liquid flow in these systems is investigated using multiphase flow analysis. This field has been extensively examined using a combination of experiments, theoretical models, and Computational Fluid Dynamics (CFD) simulations. ANSYS CFX offers two approaches to model multiphase flow behavior. The non-homogeneous Eulerian-Eulerian Model has been used in this work; it computes global information and is more convenient to study interpenetrated fluids. This study utilized the Large Eddy Simulation Model as the turbulence model, as it is better suited for non-stationary and buoyant flows. The CFD results of this study were validated with experimental data and theoretical results previously obtained. The figures of merit dimensionless penetration length and the dimensionless buoyancy length show good agreement with the experimental measurements. Correlations for these variables were obtained as a function of dimensionless numbers to give generality using only initial boundary conditions. CFD numerical model developed in this research has the capability to simulate the behavior of non-condensable gases discharged in water.

An Application of Algebraic Stress Model to a Two-Dimensional Buoyant Surface Jet (2차원 표층밀도분류에 대한 대수응력모델의 적용)

  • 김기흥;함계운;박준일;허재영
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.7 no.3
    • /
    • pp.248-256
    • /
    • 1995
  • The numerical study on the surface buoyant jets has remained of requiring more intensive investigation for problems due to the treatments of free surface, Reynolds stress/flux terms in turbulent flow and especially buoyancy effects on the turbulent fluctuation. etc. The verification of predicted results from the numerical study continues in the qualitative study. because of the lack of experimental data, which seems to be due to the difficulties in measuring the turbulent fluctuations in concentration or temperature fields. In this study, the computer program of Algebraic Stress Model has been developed to investigate the behaviours of two-dimensional surface buoyant jets with free surface boundary condition. The computational results are compared with published experimental data. By comparing these results with experimental data. it is found that this model can predict fairly well the flow characteristics of two-dimensional surface buoyant jets in the momentum-dominant region and buovancy-dominant region. Especially, it is proved that this model can predict the flow characteristics reasonably in buoyancy-dominant region stably stratified due to buoyancy effect.

  • PDF

A Numerical Study on the Open Channel Flow with Plane Wall Jet Inlet Boundary Condition (평면벽면분류의 유입경계조건을 가지는 개수로 유동에 관한 수치적 연구)

  • 설광원;이상룡
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.2
    • /
    • pp.287-298
    • /
    • 1989
  • A numerical work was performed to study the flow behaviors of the open channel type flow with its geometric boundary conditions being similar to that of the Multi-Stage-Flash evaporator with and without a baffle. For the analysis, two-dimensional steady turbulent flow was assumed and the widely known k-.epsilon. turbulence model was usded. SIMPLE algorithm and the power difference scheme were used for the numerical approach. Numerical results generally agree with the previous experimental results though there are some uncertainties at far downstream and near the free surface due to the three dimensionality of the flow and surface waves. Without a baffle, the flow has basically the shape of the submerged plane wall jet with its upper boundary at downstream being sharply curved toward the free surface. For the flow with a baffle, recirculation flow patterns are observed at the upper inlet portion and at the backside of the baffle. For the case without a baffle, it was also confirmed that the ratio between the liquid level and the gate opening height is the most important parameter to determine the flow behavior.

An empirical model of air bubble size for the application to air masker (에어마스커의 기포크기 추정 경험적 모델)

  • Park, Cheolsoo;Jeong, So Won;Kim, Gun Do;Park, Youngha;Moon, Ilsung;Yim, Geuntae
    • The Journal of the Acoustical Society of Korea
    • /
    • v.40 no.4
    • /
    • pp.320-329
    • /
    • 2021
  • In this paper, an empirical model of air bubble size to be applied to an air masker for reduction of underwater radiation noise is presented. The proposed model improves the divergence problem under the low-speed flow condition of the existing model derived using Rayleigh's jet instability model and simple continuity condition by introducing a jet flow velocity of air. The jet flow velocity of air is estimated using the bubble size where the liquid is quiescent. In a medium without flow, the size of the bubble is estimated by an empirical method where bubble formation regime is divided into a laminar-flow range, a transition range, and a turbulent-flow range based on the Reynolds number of the injected air. The proposed bubble size model is confirmed to be in good agreement with the Computational Fluid Dynamics (CFD) analysis result and the experimental results of the existing literature. Using the acoustic inversion method, the air bubble population is estimated from the insertion loss measured during the air injection experiment of the air- masker model in a large cavitation tunnel. The results of the experiments and the bubble size model are compared in the paper.