• Title/Summary/Keyword: Turbulent Heat Flux

Search Result 148, Processing Time 0.023 seconds

Experimental study of turbulent thermal convection between two flat plates (실험적 방법에 의한 두 평판 사이의 난류 열대류의 해석)

  • 윤효철;정명균
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.5
    • /
    • pp.1138-1149
    • /
    • 1988
  • Experiments have been conducted to investigate mean thermal structure in unstable turbulent thermal convection between two horizontal flat plates. The upper plate was kept at a constant cold temperature and the bottom plate at a constant hot temperature. Both air and water were used as its working fluids. Chamber aspect ratios were 3.80 and 6.17, the mean temperature differences between two plates were 2.6-9.3.deg. C, whose Rayleigh numbers in a range 6.13*10$^{5}$ -1, 07*10$^{8}$ . The heat transfer correlations obtained through the experiments are Nu=0.139R $a^{0.285}$ for air and Nu=0.087 R $a^{0.319}$ for water. Profiles of the mean temperature gradient clearly show the -2 and 1 4/3 power law regions.

The Review of Studies on Pressure Drop and Heat Transfer In Microchannels

  • Hwang, Yun-Wook;Kim, Min-Soo
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.13 no.1
    • /
    • pp.51-60
    • /
    • 2005
  • This paper reviews the studies on the pressure drop and the heat transfer in microchannels. Although a lot of studies about the single-phase flow have been done until now, conflicting results are occasionally reported about flow transition from laminar flow to turbulent flow, friction factor, and Nusselt number. Some studies reported the early flow transition due to relatively greater wall effect like surface roughness, but the other studies showed that the flow transition occurred at the Reynolds number of about 2300 and the early flow transition might be due to less accurate measurement of the channel geometry. Also, there have been arguments whether the conventional relation based upon continuum theory can be applied to the fluid flow and the heat transfer in microchannels without modification or not. The studies about the two-phase flow in microchannels have been mostly about investigating the flow pattern and the pressure drop in rectangular channels using two-component, two-phase flow like air/water mixture. Some studies proposed correlations to predict two-phase flow pressure drop in microchannels. They were mostly based on Lockhart-Martinelli model with modification on C-coefficient, which was dependent on channel geometry, Reynolds number, surface tension, and so on. Others investigated the characteristics of flow boiling heat transfer in microchannels with respect to test parameters such as mass flux, heat flux, system pressure, and so on. The existing studies have not been fully satisfactory in providing consistent results about the pressure drop and the heat transfer in microchannels. Therefore, more in-depth studies should be done for understanding the fundamentals of the transport phenomena in the microchannels and giving the basic guidelines to design the micro devices.

A Study on the Heat Transfer Performance Using Various Grooved Heat Transfer Tubes (다양한 전열관 내부 홈 변화에 의한 열전달 성능에 관한 연구)

  • Han, K.I.;Chung, W.K.;Ye, S.S.;Park, S.H.
    • Journal of Power System Engineering
    • /
    • v.4 no.1
    • /
    • pp.26-32
    • /
    • 2000
  • Single-phase heat transfer performance and pressure drop for internally grooved tubes with angles were studied. Experiments were carried out in a counter flow heat exchanger with water as a working fluid. Two commercially available internally grooved tubes and smooth tube were tested. The internal diameter of the smooth tube was 16.5mm and the internal diameters of grooved tubes were 15.4mm, 14.9mm, 15.0mm, 16.7mm, respectively. Grooved angles in the tubes were $37^{\circ},\;43^{\circ},\;45^{\circ},\;50^{\circ}$, respectively. An experimental device to measure the friction factor and heat transfer coefficient was constructed. The experimental results were obtained for the fully developed turbulent flow of water in tube on the condition of uniform heat flux. As the increase of flow rate, Reynolds number, numbers of groove and grooved angle led to the increase of pressure drop. Also this paper showed that heat transfer rate increased with increasing numbers of groove and grooved angle. An empirical relation taken from this study represented most of the data within ${\pm}25%$.

  • PDF

Computational Fluid Dynamics Applied to Hypersonic Blunt Body Flows (Hypersonic 뭉뚝 물체 흐름에 적용된 CFD)

  • Baik, Doo-Sung;Han, Young-Chaol;Ha, Young-Min;Kim, Duk-Sang
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.311-316
    • /
    • 2001
  • The thin-layer Navier-Stokes equations are solved for the hypersonic flow over blunt cone configurations with applications to laminar as well as turbulent flows. The equations are expressed in the forms of flux-vector splitting and explicit algorithm. The upwind schemes of Steger-Warming and van Leer are investigated in their ability to accurately predict the heating loads along the surface of the body. A comparison with the second order extensions of these schemes is made and a hybrid scheme incorporating a combination of central differencing and flux-vector-splitting is presented. This scheme is also investigated in its ability to accurately predict heat transfer distributions.

  • PDF

ESTIMATES OF NET AIR-SEA FLUXES FOR THE TROPICAL AND SUBTROPICAL ATLANTIC BASED ON SATELLITE DATA

  • Katsaros, Kristina B.;Pinker, Rachel T.;Bentamy, Abderrahim;Carton, James A.;Drennan, William M.;Mestas-Nunez, Alberto M.
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.997-1000
    • /
    • 2006
  • We estimate the net heat flux in the tropical and subtropical Atlantic Ocean using satellite data. These fluxes are related to changes in sea surface temperature (SST). This variable influences atmospheric circulations and is indicative of surface and subsurface oceanic circulations. We employ data from the geostationary METEOSAT-7 and 8 satellites and from the Special Sensor Microwave/Imager (SSM/I) for the shortwave and long-wave radiative fluxes, and for estimates of SST. For turbulent flux calculations, we use the bulk aerodynamic method with satellite estimates for wind speed and atmospheric humidity and temperature.

  • PDF

Numerical Study of High Resolution Schemes for GH2/GO2 Rocket Combustor using Single Shear Coaxial Injector (단일 전단 동축 분사기를 가지는 GH2/GO2 로켓 연소기의 고해상도 수치해석)

  • Jeong, Seung-Min;Um, Jae-Ryeong;Choi, Jeong-Yeol
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.6
    • /
    • pp.72-83
    • /
    • 2018
  • In this study, a series of CFD analyses were carried out for a hydrogen rocket combustor with a single shear coaxial injector. A hybrid RANS/LES approach was used for the turbulent combustion analysis with a two-dimensional axisymmetric configuration. Three reaction mechanisms, three spatial discretization methods, and three levels of grid resolution were compared to determine an appropriate CFD approach. The performance of the CFD prediction were investigated by comparing the wall heat flux with experimental data. Investigation of the flow field results provides an insight into the characteristics of the turbulent reacting flow of a rocket combustor with a shear coaxial injector.

EVALUATION OF TURBULENCE MODELS FOR ANALYSIS OF THERMAL STRATIFICATION (열성층 해석 난류모델 평가)

  • Cho, Seok-Ki;Kim, Se-Yun;Kim, Seong-O
    • Journal of computational fluids engineering
    • /
    • v.10 no.4 s.31
    • /
    • pp.12-17
    • /
    • 2005
  • A computational study of evaluation of current turbulence models is performed for a better prediction of thermal stratification in an upper plenum of a liquid metal reactor. The turbulence models tested in the present study are the two-layer model, the shear stress transport (SST) model, the v2-f model and the elliptic blending mode(EBM). The performances of the turbulence models are evaluated by applying them to the thermal stratification experiment conducted at JNC (Japan Nuclear Corporation). The algebraic flux model is used for treating the turbulent heat flux for the two-layer model and the SST model, and there exist little differences between the two turbulence models in predicting the temporal variation of temperature. The v2-f model and the elliptic blending model better predict the steep gradient of temperature at the interface of thermal stratification, and the v2-f model and elliptic blending model predict properly the oscillation of the ensemble-averaged temperature. In general the overall performance of the elliptic blending model is better than the v2-f model in the prediction of the amplitude and frequency of the temperature oscillation.

Experimental and Numerical Investigation on Heat Transfer and Fluid Flow Characteristics in the Ribbed Square Channel (거친 사각채널에서 열전달과 유체유동 특성에 관한 실험 및 수치해석)

  • Kang, Ho-Keun;Baer, Sung-Taek;Lee, Dae-Hee;Ahn, Soo-Whan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.30 no.2
    • /
    • pp.275-283
    • /
    • 2006
  • Experiment and three dimensional numerical investigations of incompressible turbulent flow through square channels with one- and two-sided ribbed walls are performed to determine pressure drop and heat transfer. The CFX(version 5.7) software package is used for the computation. The ribbed walls have a $45^{\circ}$ inclined square rib. Uniform heat flux is maintained on whole inner heat transfer channel area. The numerical results coincide with experimental data that obtained for $7,600{\le}Re{\le}24.900$, the pitch-to-rib height ratio (p/e) of 8.0. and the rib height-to-channel hydraulic diameter ratio ($e/D_h$) of 0.0667. The results show that values of local heat transfer coefficient and friction factor in the channel with two-sided ribbed wall are higher than those in the channel with one-sided ribbed walls.

Heat Transfer on a Heated Flat Plate by an Impinging Round Jet Using Liquid Crystal (Liquid Crystal을 이용한 원형충돌분류의 전열특성 연구)

  • 오승묵;이상준
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.8
    • /
    • pp.1566-1574
    • /
    • 1992
  • Local heat transfer characteristics for a round air jet impinging normally on a heated flat plate were experimentally investigated. The problem parameters investigated were jet Reynolds number, Re=4000,10000, and 20000, and nozzle-to-plate spacing(L/D) of 2,6, and 10. The temperature variations on the flat uniform heat flux surface were mapped using a thermo-sensitive liquid crytal sheet. The isochromatic images corresponding to the characteristic temperature of liquid crystal were analyzed with the help of a digital image processing system. The local Nusselt number, Nu decreased rapidly in the impingement region and exhibited a similar profiles in the wall jet region independent of the nozzle-to-plate spacing L/D. In the case of large Reynolds number, heat transfer rate (Nu) was proportional to 0.5 power of the Reynolds number. For L/D=2, a secondary peak in the heat transfer rate was seen in the region of X/D=1.5~3 due to the transition from laminar to turbulent boundary layer.

A numerical study of flow and heat transfer characteristics varied by impingement jet in turbine blade cooling (터빈블레이드의 냉각에서 충돌제트에 의해 변화되는 유동 및 열전달 특성에 관한 수치해석적 연구)

  • Lee, Jeong-Hui;Kim, Sin-Il;Yu, Hong-Seon;Choe, Yeong-Gi
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.12
    • /
    • pp.4013-4026
    • /
    • 1996
  • A numerical simulation has been carried out for the jet impinging on a flat plate and a semi-circular concave surface. In this computation finite volume method was employed to solve the full Navier-Stokes equation based on a non-orthogonal coordinate with non staggered variable arrangement. The standard k-.epsilon. turbulent model and low Reynolds number k-.epsilon. model(Launder-Sharmar model) with Yap's correction were adapted. The accuracy of the numerical calculations were compared with various experimental data reported in the literature and showed good predictions of centerline velocity decay, wall pressure distribution and skin friction. For the jet impingement on a semi-circular concave surface, potential core length was calculated for two different nozzle(round edged nozzle and rectangular edged nozzle) to consider effects of the nozzle shape. The result showed that round edged nozzle had longer potential core length than rectangular edged nozzle for the same condition. Heat transfer rate along the concave surface with constant heat flux was calculated for various nozzle exit to surface distance(H/B) in the condition of same jet velocity. The maximum local Nusselt number at the stagnation point occurred at H/B = 8 where the centerline turbulent intensity had maximum value. The predicted Nusselt number showed good agreement with the experimental data at the stagnation point. However heat transfer predictions along the downstream were underestimated. This results suggest that the improved turbulence modeling is required.