• Title/Summary/Keyword: Turbulent Flows

Search Result 739, Processing Time 0.025 seconds

Prediction of Stratified Turbulent Channel Flows with an Second Moment Model Using the Elliptic Equations (타원 방정식을 사용하는 2차모멘트 모형에 의한 성층된 난류 평판유동의 예측)

  • Shin, Jong-Keun
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.19 no.12
    • /
    • pp.831-841
    • /
    • 2007
  • This work is to extend the elliptic operator, which has been already adopted in turbulent stress model, to fully developed turbulent buoyant channel flows with changing the orientation of the buoyancy vector to be perpendicular to the channel walls. The turbulent heat flux models based on the elliptic concept are employed and closely linked to the elliptic blending second moment closure which is used for the prediction of Reynolds stresses. In order to reflect the stable or unstable stratification conditions, the present model introduces the gradient Richardson number into the thermal to mechanical time scale ratio and model coefficients. The present model has been applied for the computation of stably and unstably stratified turbulent channel flows and the prediction results are directly compared to the DNS data.

A Study on Turbulent Characteristics of Turbulent Pulsating Flows in a Square Duct (4각 덕트내에서 난류 맥동유동의 난류특성에 관한 연구)

  • Park, G.M.;Go, Y.H.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.2 no.3
    • /
    • pp.188-198
    • /
    • 1990
  • Turbulent characteristics of turbulent pulsating flows were studied experimentally in a square duct. Velocity waveforms, velocity profiles, and turbulent intensity of turbulent pulsating flow were investigated by using a hot-wire anemometer with data acquisition and a processing system in a square duct with a ratio of 1 ($40mm{\times}40mm$) to 4,000mm long. Turbulent components were shown to be larger in decelerating than in accelerating regions and also larger for a large phase of velocity and U'rms distribution of turbulent flow. The effect of velocity amplitude ratio does not exist for specified time [${\theta}(z^{\prime})$], amplitude ratio (${\mid}U^{\prime}_{rms.os.1}{\mid}/{\mid}U_{m.os.1}{\mid}$), and phase difference (${\Delta}U^{\prime}_{rms.os.1}-{\Delta}U_{m.os.1}$) in either turbulent oscillating or cross-sectional mean velocity components. The effect of dimensionless angular frequency for specified time [${\theta}(z^{\prime})$] can be disregarded because the dimensionless angular frequency does not affect the specified time. The velocity distributions of turbulent pulsating flows for various time-averaged Reynolds numbers are in approximate agreement with the velocity distributions for equivalent Reynolds numbers and 1/7th power law of steady flow.

  • PDF

Flow Characteristics of Drag Reducing Channel Flows Induced by Surfactant (계면활성제를 첨가한 마찰감소 채널흐름의 유동특성)

  • Park, S.R.;Yoon, H.K.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.8 no.4
    • /
    • pp.519-526
    • /
    • 1996
  • A 2D-LDV system was employed to investigate the flow field characteristics in fully developed drag reducing turbulent channel flows. The additive used in this study was Habon-G which showed splendid drag reduction effect and minimum mechanical degradation trend in the closed flow circulation loop. In order to have better understanding of the drag reduction mechanism, the instantaneous velocities were carefully measured under various experimental conditions and the flow characteristics including time-averaged velocity, turbulent intensity and Reynolds shear stresses were carefully assessed. The time-averaged velocity profiles of surfactant flows showed more parabolic shape(typically shown in a laminar flow) together with significant suppression of turbulent production, yielding the shear induced micelle structure orienting in the flow direction due to its isotropic characteristics. Especially it was observed that the maximum intensity for drag reducing flows was shifted away from the wall and that the streamwise and normal turbulent intensities were strongly altered. This phenomenon strongly suggests that the viscous sublayer becomes thicker with addition of surfactant. Turbulent momentum transport was drastically suppressed across the whole drag reducing channel flow.

  • PDF

Large eddy simulation of turbulent flows in a grooved channel (홈이 파진 평판 사이 난류유동의 대와동모사 (LES))

  • Yang, Gyeong-Su;Kim, Do-Hyeong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.1
    • /
    • pp.34-49
    • /
    • 1998
  • In this study, turbulent flows in a grooved channel are numerically investigated by Large Eddy Simulation (LES). Especially, a parametric study is carried out to study effects of length and depth of a groove on large-scale flow structures. For one test case, comparison of LES results with those of DNS reveals a good agreement even though the number of grid points of LES is only 6.5% of that of DNS. This confirms that LES is a suitable tool for a parametric study of turbulent flows. The subsequent parametric study using LES shows that the large-scale turbulent structures are significantly affected by the geometry of the groove. Especially, when the length of the groove is short such that the recirculation region occupies the entire groove, the turbulent flow in the groove becomes very weak in both mean and fluctuation quantities.

ANALYSIS OF TURBULENT BOUNDARY LAYER FLOWS USING A TIME MARCHING METHOD (시간 전진법을 이용한 난류 경계층 유동의 해석)

  • Gong, H.;Lee, S.
    • Journal of computational fluids engineering
    • /
    • v.20 no.1
    • /
    • pp.32-38
    • /
    • 2015
  • A 3-dimensional compressible turbulent boundary layer solver has been developed. A time marching method is used to integrate the turbulent boundary layer equations. While the direct integration of the boundary layer equations is performed for unseparated flow regions, the inverse integration is performed for separated flow regions. The program is verified for flows that have analytical solutions or other numerical results. The solver will be merged with an Euler solver for viscous-inviscid interaction.

Performance Evaluation of Large Eddy Simulation for Recirculating and Swirling Flows (재순환 및 선회 유동에 대한 대와동모사(LES)의 성능검토)

  • Hwang Cheol-Hong;Lee Chang-Eon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.4 s.247
    • /
    • pp.364-372
    • /
    • 2006
  • The objective of this study is to evaluate the efficiency and the prediction accuracy of developed large eddy simulation (LES) program for complex turbulent flows, such as recirculating and swirling flows. To save the computational cost, a Beowulf cluster system consisting 16 processors was constructed. The flows in backward-facing step and dump combustor were examined as representative recirculating and swirling flows. Firstly, a direct numerical simulation (DNS) for laminar backward-facing step flows was previously conducted to validate the overall performance of program. Then LES was carried out for turbulent backward-facing step flows. The results of laminar flow showed a qualitative and quantitative agreement between simulations and experiments. The simulations of the turbulent flow also showed reasonable results. Secondly, LES results for non-swirling and swirling flows in a dump combustor were compared with the results of Reynolds-averaged Navier-Stokes (RANS) using standard $k-{\varepsilon}$ model. The results show that LES has a better performance in predicting the mean axial and azimuthal velocities, comer recirculation zone (CRZ) and center toroidal recirculation zone (CTRZ) than those of RANS. Finally, it was examined the capability of LES for the description of unsteady phenomena.

Computational Investigation of Turbulent Swirling Flows in Gas Turbine Combustors

  • Benim, A.C.;Escudier, M.P.;Stopford, P.J.;Buchanan, E.;Syed, K.J.
    • International Journal of Fluid Machinery and Systems
    • /
    • v.1 no.1
    • /
    • pp.1-9
    • /
    • 2008
  • In the first part of the paper, Computational Fluid Dynamics analysis of the combusting flow within a high-swirl lean premixed gas turbine combustor and over the $1^{st}$ row nozzle guide vanes is presented. In this analysis, the focus of the investigation is the fluid dynamics at the combustor/turbine interface and its impact on the turbine. The predictions show the existence of a highly-rotating vortex core in the combustor, which is in strong interaction with the turbine nozzle guide vanes. This has been observed to be in agreement with the temperature indicated by thermal paint observations. The results suggest that swirling flow vortex core transition phenomena play a very important role in gas turbine combustors with modern lean-premixed dry low emissions technology. As the predictability of vortex core transition phenomena has not yet been investigated sufficiently, a fundamental validation study has been initiated, with the aim of validating the predictive capability of currently-available modelling procedures for turbulent swirling flows near the sub/supercritical vortex core transition. In the second part of the paper, results are presented which analyse such transitional turbulent swirling flows in two different laboratory water test rigs. It has been observed that turbulent swirling flows of interest are dominated by low-frequency transient motion of coherent structures, which cannot be adequately simulated within the framework of steady-state RANS turbulence modelling approaches. It has been found that useful results can be obtained only by modelling strategies which resolve the three-dimensional, transient motion of coherent structures, and do not assume a scalar turbulent viscosity at all scales. These models include RSM based URANS procedures as well as LES and DES approaches.

A Study on the Comparison Between Experimental and Numerical Analysis for Developing Turbulent Steady Flows in the Entrance Region of a Square Duct (정4각덕트의 입구영역에서 난류정상유동의 실험해와 수치해의 비교에 관한 연구)

  • 고영하;박길문;봉태근
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.21 no.3
    • /
    • pp.236-245
    • /
    • 1997
  • The flow characteristics of developing turbulent steady flow are investigated numerically and experimentally in the entrance region of a square duct ($40 mm{\times}40 mm$ and 4, 000 mm). The numerical anaysis are incorporated by finite- volume discretization with staggered grid system and SIMPLE algorithm. The numerical solution are compared with experimental results of mean velocity profiles, turbulence intensity and entrance length. For turbulent steady flow, the turbulent components in the velocity waveforms increase as the dimensionless transverse position approaches the wall. Thrbulence intensity increases as the dimensionless transverse position increases from the center to the wall of the duct for the developing turbulent steady flows. The entrance length of the turbulent steady flow is about 40 times as large as the hydraulic diameter under the present experimental condition.

  • PDF

Kernel-Based Fuzzy Regression Machine For Predicting Turbulent Flows

  • Hong, Dug-Hun;Hwang, Chang-Ha
    • 한국데이터정보과학회:학술대회논문집
    • /
    • 2004.04a
    • /
    • pp.91-101
    • /
    • 2004
  • The turbulent flow is of fundamental interest because the conservation equations for thermodynamics, mass and momentum are linked together. This turbulent flow consists of some coherent time- and space-organized vortical structures. Research has already shown that some dynamic systems and experimental models still cannot provide a good nonlinear analysis of turbulent time series. In the real turbulent flow, very complicated nonlinear behaviors, which are affected by many vague factors are present. In this paper, a kernel-based machine for fuzzy nonlinear regression analysis is proposed to predict the nonlinear time series of turbulent flows. In order to show the practicality and usefulness of this model, we present an example of predicting the near-wall turbulence time series as a verifiable model and compare with fuzzy piecewise regression. The results of practical applications show that the proposed method is appropriate and appears to be useful in nonlinear analysis and in fuzzy environments to predict the turbulence time series.

  • PDF

An Analysis of 2-D Bluff Bodies Flows by Multi-Vision PIV (Multi-Vision PIV에 의한 2차원 단순물체의 유동장 해석)

  • Song, K.T.;Lee, H.;Kim, Y.T.;Lee, Y.H.
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.26 no.5
    • /
    • pp.573-580
    • /
    • 2002
  • Animation and time-resolved analysis of the wake characteristics of 2-D bluff body flows were examinated by applying the multi-vision PIV to square cylinders(three angles of attack: $0^{circ}, 30^{circ} and 45^{\circ}$) and circular cylinders(three rotating speeds: 0rpm, 76rpm, 153rpm) submerged within a circulating water channel $(Re=10^4)$, The macroscopic shedding patterns and their dominant frequencies were discussed in terms of instantaneous velocity, vorticity and turbulent quantities such as turbulent intensity, turbulent kinetic energy and three Reynolds stresses. Particularly the time-averaged distribution of turbulent intensity 'islands' where their peak magnitudes were focused always small regions behind the bodies without noticeable spatial migration were particularly discovered in all cases. And the dominant frequencies of the turbulent quantities in the wake regions were two times larger than those of the velocity and vorticity.