• Title/Summary/Keyword: Turbulent Flows

검색결과 739건 처리시간 0.026초

큰 받음각을 갖는 세장형 물체 주위의 점성 유동장 수치 모사 (Numerical Simulation of Asymmetric Vortical Flows on a Slender Body at High Incidence)

  • 노오현;황수정
    • 한국전산유체공학회지
    • /
    • 제1권1호
    • /
    • pp.98-111
    • /
    • 1996
  • The compressible laminar and turbulent viscous flows on a slender body in supersonic speed as well as subsonic speed have been numerically simulated at high angle of attack. The steady and time-accurate compressible thin-layer Navier-Stokes code based on an implicit upwind-biased LU-SGS algorithm has been developed and specifically applied at angles of attack of 20, 30 and 40 dog, respectively. The modified eddy-viscosity turbulence model suggested by Degani and Schiff was used to simulate the case of turbulent flow. Any geometric asymmetry and numerical perturbation have not been intentionally or artificially imposed in the process of computation. The purely numerical results for laminar and turbulent cases, however, show clear asymmetric formation of vortices which were observed experimentally. Contrary to the subsonic results, the supersonic case shows the symmetric formation of vortices as indicated by the earlier experiments.

  • PDF

원심회전차 내부유도장에 관한 수치해석적 연구 (Numerical study on flows within an shrouded centrifugal impeller passage)

  • 김성원;조강래
    • 대한기계학회논문집B
    • /
    • 제20권10호
    • /
    • pp.3272-3281
    • /
    • 1996
  • The flow analysis method which had been developed for the numerical calculation of 3-dimensional, incompressible and turbulent flow within an axial compressor was extended to the flow field within centrifugal impeller. In this method based on the SIMPLE(Semi Implicit Method Pressure Linked Equations) algorithm, the coordinate transformation was adopted and the standard k-.epsilon. model using wall function was used for turbulent flow analysis. The calculated flow fields have agreed very well with measurement results. Especially, 3-dimensional and viscous flow characteristics including secondary flows, jet-wake flow and decreased pressure rise along impeller passage, which can't be predicted by inviscid Q3D calculation were predicted very reasonably.

회전하는 정사각단면 $90^{\circ}$ 곡덕트 내 내향 난류유동 측정 (Measurement of Inward Turbulent Flows in a Rotating with Square Cross-Section $90^{\circ}$ Duct)

  • 김동철;전건호;최영돈
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 추계학술대회논문집B
    • /
    • pp.627-632
    • /
    • 2000
  • Developing turbulent flows in a rotating 90 degree bend with square cross-section were measured by a hot-wire anemometer. The six orientation hot-wire technique was applied to measured the distributions of 3 mean velocities and 6 Reynolds stress components. Effects of Coriolis and centrifugal forces caused by the curvature and rotation of bend on the mean motion and turbulence structures were experimentally investigated Productive addition of Coriolis and centrifugal forces to the outward radial direction in the entrance region of bend increases the secondary flow intensity according to the rotational speeds. However, after 45 degree of bend, centrifugal force due to the rotation of bend may promote the break down of counter rotating vortex pair into multi-cellular pattern, thereby decreasing the production rate of turbulence energy and Reynolds stresses.

  • PDF

선박 워터제트 추진기 덕트 내부의 난류유동 해석에 관한 연구 (Computational study on turbulent flows inside the duct of marine waterjet propulsor)

  • 박일룡;김우전;안종우;김기섭
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2002년도 학술대회지
    • /
    • pp.181-184
    • /
    • 2002
  • CFD calculations are carried out to investigate the turbulent flow characteristics inside the duct of marine waterjet propulsors. The Reynolds-averaged Wavier-Stokes equations are solved using a finite-volume method. Standard $k-{\varepsilon}$ model and realizable $k-{\varepsilon}$ model are evaluated with an existing experimental data. Multi-block grid topology is adopted to describe the details of complex duct geometry. The present numerical methods are applied to the preliminary duct design of new waterjet propulsor system. Four different influx conditions are simulated to find out pressure and velocity distribution inside the intake duct. Attention is also paid upon the possible flow separation inside the waterjet duct. It is found that CFD tools can be used for the initial evaluation of inflow condition into the impeller of waterjet propulsor system.

  • PDF

Numerical Analysis of Plume Characteristics and Liquid Circulation in Gas Injection Through a Porous Plug

  • Choi, Choeng-Ryul;Kim, Chang-Nyung
    • Journal of Mechanical Science and Technology
    • /
    • 제14권12호
    • /
    • pp.1365-1375
    • /
    • 2000
  • Two phase flows have been numerically calculated to analyze plume characteristics and liquid circulation in gas injection through a porous plug. The Eulerian approach has been for formulation of both the continuous and dispersed phases. The turbulence in the liquid phase has been modeled using the standard $textsc{k}$-$\varepsilon$ turbulence model. The interphase friction coefficient has been calculated using correlations available in the literature. The turbulent dispersion of the phase has been modeled by the "dispersion Prand시 number". The predicted mean flows is compared well with the experimental data. The plume region area and the axial velocities are increased with the gas flow rate and with the decrease in the inlet area. The turbulent intensity also shows the same trend. Also, the space-averaged turbulent kinetic energy for various gas flow rates and inlet areas has been obtained. The results are of interest in the design and operation of a wide variety of materials and chemical processing operations.

  • PDF

비선형 저레이놀즈수 κ-ε 난류모델에 따른 정사각형 덕트내 완전 발달된 난류유동 예측 (Prediction of Fully Developed Turbulent Flow in a Square Duct with Nonlinear Low-Reynolds-Number κ-ε Models)

  • 명현국
    • 대한기계학회논문집B
    • /
    • 제27권6호
    • /
    • pp.821-827
    • /
    • 2003
  • Fully developed turbulent flow in a square duct is numerically predicted with two nonlinear low-Reynolds-number ${\kappa}-{\varepsilon}$ models. Typical predicted quantities such as axial and secondary velocities, turbulent kinetic energy and Reynolds stresses are compared in detail with each other. It is found that the nonlinear low-Reynolds-number ${\kappa}-{\varepsilon}$ model adopted in a commercial code is unable to predict accurately duct flows involving turbulence-driven secondary motion with the prediction level of secondary flows one order less than that of the experiment.

NACA16-020 익형의 단면을 갖는 날개 끝 와류 현상에 대한 3 차원 난류유동 해석 (Three-Dimensional Analysis of the Turbulent Wingtip Vortex Flows of a Wing with NACA 16-020 Airfoil Section)

  • 정남균
    • 대한기계학회논문집B
    • /
    • 제33권8호
    • /
    • pp.635-642
    • /
    • 2009
  • The three-dimensional turbulent wingtip vortex flows have been examined in the present study by using the commercial code FLUENT. The standard ${\kappa}-{\varepsilon}$ model is used as a closure relationship. The wing is constructed by using an elliptic body whose aspect ratio is 3.8 and the NACA 16-020 airfoil section. The simulations for various angle attack (${\alpha}=0^{\circ}$, $5^{\circ}$, and $10^{\circ}$) are carried out. The effect of Reynolds number is also investigated in this study. As the angle attack increases, the wingtip vortex becomes stronger. However, the relative vortex strength to inlet velocity decreases as Reynolds number increases.

기저부를 갖는 축대칭 수중운동체의 저항예측에 관한 수치적 연구 (Numerical Investigation for Drag Prediction of an Axisymmetric Underwater Vehicle with Bluff Afterbody)

  • 김민재
    • 한국군사과학기술학회지
    • /
    • 제13권3호
    • /
    • pp.372-377
    • /
    • 2010
  • The objective of this study is to predict the drag of an axisymmetric underwater vehicle with bluff afterbody using CFD. FLUENT, commercial CFD code, is used to simulate high Reynolds number turbulent flows around the vehicle. The computed drag coefficients are compared to available experimental data at various Reynolds numbers. Four widely used two-equation turbulence models are investigated to evaluate their performance of predicting the anisotropic turbulence in a recirculating flow region, which is caused by flow separation arising from the base of the vehicle. The simulations with Realizable ${\kappa}-{\varepsilon}$ and ${\kappa}-{\omega}$ SST turbulence models predict the anisotropic turbulent flows comparatively well and the drag prediction results with those models show good agreements with the experimental data.

Measurement of Developing Turbulent Flows in a 90-Degree Square Bend with Spanwise Rotation

  • Choi Young Don;Kim Dong Chul;Lee Kun Hee
    • Journal of Mechanical Science and Technology
    • /
    • 제19권7호
    • /
    • pp.1503-1516
    • /
    • 2005
  • Mean flow and turbulence properties of developing turbulent flows in a 90 degree square bend with span-wise rotation are measured by a hot-wire anemometer. A slanted wire is rotated into 6 orientations and the voltage outputs from them are combined to obtain the mean velocity and the Reynolds stress components. Combined effects of the centrifugal and Coriolis forces due to the curvature and the rotation of the bend on the mean motion and turbulence structures are investigated experimentally. Results show that the two body forces can either enhance or counteract each other depending on the flow direction in the bend.

스크램제트 엔진의 난류 연소 및 탄화수소 연료 연구 및 방향 (Research Activities and Directions of Turbulent Combustion and Hydrocarbon Fuels in Scramjet Engine)

  • 최정열;;원수희;신재렬
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2008년도 제31회 추계학술대회논문집
    • /
    • pp.330-333
    • /
    • 2008
  • 본 논문에서는 그동안 부산대학교 연소추진연구실에서 진행되어 온 스크램제트 엔진 내의 초음속 연료 공기 혼합 및 난류 연소 연구 결과에 대한 소개가 이루질 것이다. 아울러 실용 스크램제트 엔진에서 이용되는 초임계 탄화 수소 연료 연소의 특징과 수치적 모델링 기법에 대하여 소개가 잇을 것이다.

  • PDF