• Title/Summary/Keyword: Turbulent Flow Field

Search Result 602, Processing Time 0.033 seconds

REYNOLDS NUMBER EFFECTS ON MASS TRANSFER IN TURBULENT PIPE FLOW: PART I. MEAN CONCENTRATION FIELD AND LOW-ORDER STATISTICS (난류 파이프 유동 내 물질전달에 대한 레이놀즈 수 영향: Part I. 평균 농도장 및 저차 난류통계치)

  • Kang, Chang-Woo;Yang, Kyung-Soo
    • Journal of computational fluids engineering
    • /
    • v.17 no.3
    • /
    • pp.1-10
    • /
    • 2012
  • Large Eddy Simulation(LES) of turbulent mass transfer in fully developed turbulent pipe flow has been performed to study the effect of Reynolds number on the concentration fields at $Re_{\tau}=180$, 395, 590 based on friction velocity and pipe radius. Dynamic subgrid-scale models for the turbulent subgrid-scale stresses and mass fluxes were employed to close the governing equations. Fully developed turbulent pipe flows with constant mass flux imposed at the wall are studied for Sc=0.71. The mean concentration profiles and turbulent intensities obtained from the present LES are in good agreement with the previous numerical and experimental results currently available. To show the effects of Reynolds number on the turbulent mass transfer, the mean concentration profile, root-mean-square of concentration fluctuations, turbulent mass fluxes, cross-correlation coefficient, turbulent diffusivity and turbulent Schmidt number are presented.

A Study on the Characteristics of Cylinder Wake Placed in Thermally Stratified Flow(II)(Par II. Turbulent Characteristics of Stratified Wake) (열성층유동장에 놓인 원주후류의 특성에 대한 연구(2)(Part 2. 성층후류의 난류유동특성))

  • 김경천;정양범;강동구
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.5
    • /
    • pp.1322-1329
    • /
    • 1994
  • The effect of thermal stratification on the stratified flow past a circular cylinder was examined in a wind tunnel. Turbulent intensities, the rms values of temperature and turbulent convective heat flux as well as the velocity and temperature profiles in the cylinder wake with a strong thermal gradient of $200^{\circ}C/m$ were measured by using a hot-wire and cold-wire combination probe. It is found that the temperature field affects as an active contaminant, so that the vertical growth of vortical structure is suppressed and the strouhal number decreases with increasing the extent of stratification. And also, the wake structure can not sustain their symmetricity about the wake centerline and vertical turbulent motion dissipates faster than that of the neutral case when such a strong thermal gradient is superimposed. It is evident that the turbulent mixing in the upper half section is stronger than that of the lower of the wake in a stably stratified flow because the turbulent intensities and convective heat flux in the upper half section are larger than those of the lower half of the wake.

Investigation on the Turbulent Flow-Field of a Small-size Axial Fan with Different Operating Points (운전점이 다른 소형 축류홴의 난류 유동장 고찰)

  • Kim, J.K.
    • Journal of Power System Engineering
    • /
    • v.12 no.5
    • /
    • pp.40-47
    • /
    • 2008
  • The turbulent flow characteristics around a small-size axial fan(SSAF) for a refrigerator are strongly dependent upon the operating points. Four operating points such as $\phi$ =0.1, 0.18, 0.25 and 0.32 were adopted in this study to investigate three-dimensional turbulent flow characteristics around the SSAF by using a fiber-optic type Laser Doppler Anemometer(LDA) system. Downstream mean velocity profiles of the SSAF along the radial distance show that axial and tangential velocity components exist predominantly, except $\phi$ = 0.1, and have a maximum value at $r/R{\fallingdotseq}0.8$, but radial velocity component having a relatively small value only turns flow direction to the outside or the central part of the SSAF. The turbulent intensity shows that the radial component exists most greatly after $r/R{\fallingdotseq}0.5$. Downstream turbulent kinetic energy at $\phi$ = 0.25 and 0.32 together has the largest peak value at $r/R{\fallingdotseq}0.9$.

  • PDF

Three-Dimensional Flow Characteristics in the Downstream Region of a Butterfly-Type Valve Used in Air-Conditioning Systems (공기조화용 버터플라이 밸브 하류에서의 3차원 유동특성)

  • Park, Sang-Won;Lee, Sang-Woo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.2
    • /
    • pp.260-269
    • /
    • 2000
  • Oil-film flow visualizations and three-dimensional flow measurements have been conducted in the downstream region of a butterfly-type valve used in air-conditioning systems, with the variation of a disk open angle. The flow visualizations in the flow symmetry plane show that there are a pair of counter-rotating separation/recirculation zones as wall as two jet-like near-wall flows. These flow disturbances are strongly depends on the disk open angle. Based on the flow visualization, a qualitative flow model is suggested in the near-field and downstream region of the valve disk. For a small disk open angle, the mean velocities and turbulent intensities have relatively small values in the near-field of the valve disk, but they do not show uniform distributions even in some downstream region. With an increment of the disk open angle, mean velocity variations and turbulent intensities are greatly increased in the immediate downstream region, but uniform distributions are quickly resumed as departing from the valve disk. The mass flow rate remains nearly constant for the disk open angles less than 30 degrees, meanwhile it strongly depends on the disk open angles between 45 and 75 degrees. The pressure loss is found to be about zero for the disk open angles less than 45 degrees, but is substantially increased for those larger than 75 degrees.

A Study of 3-Dimensional Turbulent Channel Flow Using Discrete Wavelet Transform (이산 웨이블릿 변환을 이용한 3차원 난류 채널 유동에 관한 연구)

  • Kim Kangshik;Lee Sanghwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.3 s.234
    • /
    • pp.314-321
    • /
    • 2005
  • Discrete Wavelet Transform (DWT) has been applied to the Direct Numerical Simulation (DNS) data of turbulent channel flow. DWT splits the turbulent flow into two orthogonal parts, one corresponding to coherent structures and the other to incoherent background flow. The coherent structure is extracted from not vorticity field but velocity's since the channel flow is not isoropic. By comparing DWT's result of channel flow with that of isotropic flow, it is shown that coherent structure maintains the properties of original channel flow. The velocity field of coherent structures can be represented by few wavelet modes and that these modes are sufficient to reproduce the velocity probability density function (PDF) and the energy spectrum over the entire inertial range. The remaining incoherent background flow is homogeneous, has small amplitude, and is uncorrelated. These results are compared with those obtained for the same compression rate using large eddy simulation (LES) filtering. In contrast to the incoherent background flow of DWT, the LES subgrid scales have a much larger amplitude and are correlated, which makes their statistical modeling more difficult.

A Study of 3-Dimensional Turbulent Channel Flow using Discrete Wavelet Transform (이산 웨이블릿 변환을 이용한 3차원 난류 채널 유동에 관한 연구)

  • Kim, Kang-Shik;Lee, Sang-Hwan
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1813-1818
    • /
    • 2004
  • Discrete Wavelet Transform (DWT) has been applied to the Direct Numerical Simulation (DNS) data of turbulent channel flow. DWT splits the turbulent flow into two orthogonal parts, one corresponding to coherent structures and the other to incoherent background flow. The coherent structure is extracted from not vorticity field but velocity's since the channel flow is not isotropic. By comparing DWT's result of channel flow with that of isotropic flow, it is shown that coherent structure maintains the properties of original channel flow. The velocity field of coherent structures can be represented by few wavelet modes and that these modes are sufficient to reproduce the velocity probability distribution function (PDF) and the energy spectrum over the entire inertial range. The remaining incoherent background flow is homogeneous, has small amplitude, and is uncorrelated. These results are compared with those obtained for the same compression rate using large eddy simulation (LES) filtering. In contrast to the incoherent background flow of DWT, the LES subgrid scales have a much larger amplitude and are correlated, which makes their statistical modeling more difficult.

  • PDF

Numerical Simulation on Interactions of Longitudinal Vortices in a Turbulent Boundary Layer (종방향 와동과 난류경계층의 상호작용에 관한 수치해석)

  • Yang Jang-Sik
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.29 no.6
    • /
    • pp.637-644
    • /
    • 2005
  • This paper describes the numerical simulation of the interaction between longitudinal vortices ("common flow up") and a 3-D turbulent boundary layer over a flat plate To analyze the common flow up Produced from vortex generators. the flow field behind the vortex generators Is modeled by the information that is available from studies on a half-delta winglet. Also. the Reynolds-averaged Navier-Stokes equation for three-dimensional turbulent flows. together with a two-layer turbulence model to resolve the near-wall flow, is solved by the method of AF-ADI. The computational results predict that the boundary layer is thinned in the regions where the secondary flow is directed toward the wall and thickened where it is directed away from the wall Also. the numerical results. such as Reynolds stresses. turbulent kinetic energy and skin friction characteristics generated from the vortex generators . are reasonably close to the experimental data.

Computation of Wake Flow of an Axisymmetric Body at Incidence (받음각을 갖는 축대칭 물체의 후류 유동 계산)

  • Kim, Hee-Taek;Lee, Pyoung-Kuk;Kim, Hyoung-Tae
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.43 no.2 s.146
    • /
    • pp.186-196
    • /
    • 2006
  • The turbulent wake flow of an axisymmetric body at incidence of $10.1^{\circ}$ is investigated by commericial CFD code, Fluent 6.2. Reynolds stress turbulence model with wall function is applied for the turbulent flow computation. For the grid generation, the Gridgen V15 is used. Numerical predictions are compared with experimental data for the validation. The computed results show goof agreements with the experimental measurements, implying that the CFD analysis is a useful and efficient tool for predicting turbulent flow characteristics of wake field of an axisymmetric body at incidence.

REYNOLDS NUMBER EFFECTS ON MASS TRANSFER IN TURBULENT PIPE FLOW: PART II. INSTANTANEOUS CONCENTRATION FIELD, HIGHER-ORDER STATISTICS AND MASS TRANSFER BUDGETS (난류 파이프 유동 내 물질전달에 대한 레이놀즈 수 영향: Part II. 순간농도장, 고차 난류통계치 및 물질전달수지)

  • Kang, Chang-Woo;Yang, Kyung-Soo
    • Journal of computational fluids engineering
    • /
    • v.17 no.3
    • /
    • pp.59-67
    • /
    • 2012
  • Large Eddy Simulation(LES) of turbulent mass transfer in fully developed turbulent pipe flow has been performed to study the effect of Reynolds number on the concentration fields at $Re_{\tau}=180$, 395, 590 based on friction velocity and pipe radius. Dynamic subgrid-scale models for the turbulent subgrid-scale stresses and mass fluxes were employed to close the governing equations. Fully developed turbulent pipe flows with constant mass flux imposed at the wall are studied for Sc=0.71. The mean concentration profiles and turbulent intensities obtained from the present LES are in good agreement with the previous numerical and experimental results currently available. The effects of Reynolds number on the turbulent mass transfer are identified in the higher-order statistics(Skewness and Flatness factor) and instantaneous concentration fields. The budgets of turbulent mass fluxes and concentration variance were computed and analyzed to elucidate the effect of Reynolds number on turbulent mass transfer. Furthermore, to understand the correlation between near-wall turbulence structure and concentration fluctuation, we present an octant analysis in the vicinity of the pipe wall.

Numerical Study on Flow Field in Centrifugal Fan Volute (원심송풍기 벌류트 내부유동의 수치해석적 연구)

  • Kim, Se-Jin;Joo, Won-Gu
    • The KSFM Journal of Fluid Machinery
    • /
    • v.1 no.1 s.1
    • /
    • pp.64-71
    • /
    • 1998
  • The non-uniform pressure generated in the volute generally are propagating upstream. As a result, outlet conditions of rotaing impeller are changed and the performance degrades. The major object of this research is to develop the numerical method which can calculate the effects of impeller and volute flow field interactions. Under the assumption of steady three-dimensional incompressible turbulent flow, the time averaged N-S equations involving $k-{\epsilon}$ turbulent model was solved by the F.V.M. To verify the computational method, the calculations are compared with experimental results published in literature and show satisfactory agreement with them, The three-dimensional flow characteristics within the volute of a centrifugal fan at design and off-design operating points have also been studied.

  • PDF