• 제목/요약/키워드: Turbulent Combustion

검색결과 525건 처리시간 0.022초

저 스월 버너에서의 난류 예혼합 부상화염장의 해석 (Numerical Modeling of Turbulent Premixed Lifted Flames in Low-Swirl Burner)

  • 강성모;이정원;김용모;정재화;안달홍
    • 한국연소학회지
    • /
    • 제12권3호
    • /
    • pp.8-15
    • /
    • 2007
  • This study has numerically modelled the combustion processes of the turbulent swirling premixed lifted flames in the low-swirl burner (LSB). In these turbulent swirling premixed flames, the four tangentially-injected air jets induce the turbulent swirling flow which plays the crucial role to stabilize the turbulent lifted flame. In the present approach, the turbulence-chemistry interaction is represented by the level-set based flamelet model.. Two-dimensional and three-dimensional computations are made for the various swirl numbers and nozzle length. In terms of the centerline velocity profiles and flame liftoff heights, numerical results are compared with experimental data The three-dimensional approach yields the much better conformity with agreements with measurements without any analytic assumptions on the inlet swirl profiles, compared to the two-dimensional approach. Numerical clearly results indicate that the present level-set based flamelet approach has realistically simulated the. structure and stabilization mechanism of the turbulent swirling stoichiometric and lean-premixed lifted flames in the low-swirl burner.

  • PDF

Reaction Zone Thickness of Turbulent Premixed Flame

  • Yamamoto, Kazuhiro;Nishizawa, Yasuki;Onuma, Yoshiaki
    • 한국연소학회지
    • /
    • 제6권2호
    • /
    • pp.36-42
    • /
    • 2001
  • Usually, we use the flame thickness and turbulence scale to classify the flame structure on a phase diagram of turbulent combustion. The flame structure in turbulence is still in debate, and many studies have been done. Since the flame motion is rapid and its reaction zone thickness is very thin, it is difficult to estimate the flame thickness. Here, we propose a new approach to determine the reaction zone thickness based on ion current signals obtained by an electrostatic probe, which has enough time and space resolution to detect flame fluctuation. Since the signal depends on the flow condition and flame curvature, it may be difficult to analyze directly these signals and examine the flame characteristics. However, ion concentration is high only in the region where hydrocarbon-oxygen reactions occur, and we can specify the reaction zone. Based on the reaction zone existing, we estimate the reaction zone thickness. We obtain the thickness of flames both in the cyclone-jet combustor and on a Bunsen burner, compared with theoretically predicted value, the Zeldovich thickness. Results show that the experimentally obtained thickness is almost the same as the Zeldovich thickness. It is concluded that this approach can be used to obtain the local flame structure for modeling turbulent combustion.

  • PDF

연소효율 개선을 위한 스월제트의 난류유동 특성에 관한 연구 (A Study on the Turbulent Flow Characteristics of Swirl Jets for Improvement of Combustion Efficiency)

  • 고동국;윤석주
    • 한국분무공학회지
    • /
    • 제19권2호
    • /
    • pp.75-81
    • /
    • 2014
  • Swirl flow in the gun type burner has a decisive effect on the stabilization of the flame, improvement of the combustion efficiency, and also a reduction of NOx. This swirl flow is created by the spinner which is inside the airtube that guide the combustion air. Gun type burner has generally the inner devices composed nozzle adapter, spark gap ignitor, and spinner. These inner components change the air flow behavior passing through air tube. Meanwhile, turbulent characteristics of this air flow are important to understand the combustion phenomena in the gun type burner, because the mixture of fuel and air are depended on. However, nearly all of the studies have been analyzed the turbulent flow of simplified combustion formation without the inner devices. So, this study conducted the measurement using by hot-wire anemometer and analyzed turbulent flow characteristics of the swirl flow discharged from the air tube with inner devices. Turbulence characteristics come up in this study were turbulence intensity, kinetic energy and shear stress of the air flow with the change of the distance of axial direction from the exit of the air tube.

난류 화염 내에서의 매연 입자의 생성및 재연소 (Soot Formation and Combustion in Turbulent Flames)

  • 정종수;신현동;이춘식
    • 대한기계학회논문집
    • /
    • 제13권5호
    • /
    • pp.962-978
    • /
    • 1989
  • 본 연구에서는 저자들이 이미 발표한 난류 화염에서의 매연 농도 분포 해석을 포함한 화염 구조 및 복사 열전달의 해석에 대한 연구와 관련하여, 난류 화염에서의 생성된 매연 입자의 재연소 속도에 관한 새로운 모델을 제시한다.구체적인 방법 으로, 난류 화염에 대한 난류 지배 방정식의 매듭(closure) 문제로서 문제가 되고 있는 난류 모델과 반응 속도 모델에 대해서는 비교적 잘 정립되어 있다고 할 수 있는 축대칭 분류 유동을 선택하여, 난류 모델과 난류 연소 속도 모델을 고정하고, 난류 화염에서의 매연 생성 및 연소 모델을 검토하였다.

SOOT YIELD OF TURBULENT PREMIXED PROPANE-OXYGEN-INERT GAS FLAMES IN A CONSTANT-VOLUME COMBUSTOR AT HIGH PRESSURES

  • Bae, M.W.;Bae, C.W.;Lee, S.K.;Ahn, S.W.
    • International Journal of Automotive Technology
    • /
    • 제7권4호
    • /
    • pp.391-397
    • /
    • 2006
  • The soot yield has been studied by a premixed propane-oxygen-inert gas combustion in a specially designed disk-type constant-volume combustion chamber to investigate the effect of pressure, temperature and turbulence on soot formation. Premixtures are simultaneously ignited by eight spark plugs located on the circumference of chamber at 45 degrees intervals in order to observe the soot formation under high temperature and high pressure. The eight converged flames compress the end gases to a high pressure. The laser schlieren and direct flame photographs with observation area of 10 mm in diameter are taken to examine the behaviors of flame front and gas flow in laminar and turbulent combustion. The soot volume fraction in the chamber center during the final stage of combustion at the highest pressure is measured by the in-situ laser extinction technique and simultaneously the corresponding burnt gas temperature by the two-color pyrometry method. The changes of pressure and temperature during soot formation are controlled by varying the initial charging pressure and the volume fraction of inert gas compositions, respectively. It is found that the soot yield increases with dropping the temperature and raising the pressure at a constant equivalence ratio, and the soot yield in turbulent combustion decreases as compared with that in laminar combustion because the burnt gas temperature increases with the drop of heat loss for laminar combustion.

선회유동을 가지는 난류 예혼합 부상화염장의 해석 (Numerical Modeling of Turbulent Swirling Premixed Lifted Flames)

  • 강성모;김용모;정재화;안달홍
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2006년도 제32회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.89-95
    • /
    • 2006
  • This study has numerically modelled the combustion processes of the turbulent swirling premixed lifted flames in the low-swirl burner (LSB). In these turbulent swirling premixed flames, the four tangentially-injected air jets induce the turbulent swirling flow which plays the crucial role to stabilize the turbulent lifted flame. In the present approach, the turbulence-chemistry interaction is represented by the level-set based flamelet model. Two-dimensional and three-dimensional computations are made for the various swirl numbers and nozzle length. In terms of the centerline velocity profiles and flame liftoff heights, numerical results are compared with experimental data The three-dimensional approach yields the much better conformity with agreements with measurements without any analytic assumptions on the inlet swirl profiles, compared to the two-dimensional approach. Numerical clearly results indicate that the present level-set based flamelet approach has realistically simulated the structure and stabilization mechanism of the turbulent swirling stoichiometric and lean-premixed lifted flames in the low-swirl burner.

  • PDF

Dynamic Subgrid G-방정식을 적용한 난류 예혼합 화염의 LES 해석 (Large Eddy Simulation of Turbulent Premixed Flame Behavior with Dynamic Subgrid G-Equation Model)

  • 박남섭;김만영
    • 한국항공우주학회지
    • /
    • 제33권11호
    • /
    • pp.57-64
    • /
    • 2005
  • 화염면의 전파를 모사하는 -방정식에 기초한 DSGS 모델을 이용한 난류 예혼합 연소에 대한 LES 해석을 수행하였다. -방정식에 새롭게 도입된 DSGS 모델을 적용한 LES 지배방정식을 고찰한 후 후향계단을 갖는 복잡한 형상의 연소기 내의 난류 예혼합 연소 유동을 고찰하였다. 본 연구의 LES 해석은 재부착 위치, 평균속도 및 변동량, 그리고 온도와 같은 실험결과를 정확히 예측하였다.

고압 분위기하에 분사된 메탄가스 제트의 자연점화 및 화염전파 특성 해석 (Numerical analysis for Autoignition Characteristics of Turbulent Gaseous Jets in a High Pressure Environment)

  • 김성구;유용욱;김용모
    • 한국자동차공학회논문집
    • /
    • 제10권5호
    • /
    • pp.81-89
    • /
    • 2002
  • The autoignition and subsequent flame propagation of initially nonpremixed turbulent system have been numerically analyzed. The unsteady flamelet modeling based on the RIF (representative interactive flamelet) concept has been employed to account for the influences of turbulence on these essentially transient combustion processes. In this RIF approach, the partially premixed burning, diffusive combustion and formation of pollutants(NOx, soot) can be consistently modeled by utilizing the comprehensive chemical mechanism. To treat the spatially distributed inhomogeneity of scalar dissipation rate, the multiple RIFs are employed in the framework of EPFM(Eulerian particle flamelet model) approach. Computations are made for the various initial conditions of pressure, temperature, and fuel composition. The present turbulent combustion model reasonably well predicts the essential features of autoignition process in the transient gaseous fuel jets injected into high pressure and temperature environment.

급 확대부를 갖는 실린더 챔버 내부 유동에 관한 LES (Large Eddy Simulation of Turbulent Flow Inside a Sudden Expansion Cylinder Chamber)

  • 성형진;고상철
    • 대한기계학회논문집B
    • /
    • 제25권7호
    • /
    • pp.885-894
    • /
    • 2001
  • A large eddy simulation(LES) is performed for turbulent flow in a combustion device. The combustion device is simplified as a cylinder with sudden expansion. To promote turbulent mixing and to accommodate flame stability, a flame holder is attached inside the combustion chamber. Emphasis is placed on the flow details with different geometries of the flame holder. The subgrid scale models are applied and validated. The simulation code is constructed by using a general coordinate system based on the physical contravariant velocity components. The calculated Reynolds numbers are 5000 and 50000 based on the bulk velocity and the diameter of inlet pipe. The predicted turbulent statistics are evaluated by comparing with the LDV measurement data. The agreement of LES with the experimental data is shown to be satisfactory.

성층급기 연소현상에 관한 수치적 연구 (A Numerical Study on Stratified Charge Formation and Combustion Processes)

  • 이석영;허강열
    • 한국자동차공학회논문집
    • /
    • 제15권5호
    • /
    • pp.86-96
    • /
    • 2007
  • A direct-injection stratified-charge(DISC) engine has been considered as a promising alternative in spite of high unburned hydrocarbon emission levels during light load operation. In this paper investigation is made to characterize formation and combustion processes of stratified mixture charge in a simple constant volume combustion chamber. Both experimental and numerical analyses are performed for fluid and combustion characteristics with 3 different induction types for rich, homogeneous and lean mixture conditions. The commercial code FIRE is applied to the turbulent combustion process in terms of measured and calculated pressure traces and calculated distributions of mean temperature, OH radical and reaction rate. It turns out that the highest combustion rate occurs for the rich state condition at the spark ignition location due to existence of stoichiometric mixture and timing.