• Title/Summary/Keyword: Turbulent Combustion

Search Result 525, Processing Time 0.025 seconds

Numerical Study for Kerosene/LOx Supercritical Mixing Characteristics of Swirl Injector (동축와류형 분사기의 케로신/액체산소 초임계 혼합특성 수치적 연구)

  • Heo, Jun-Young;Kim, Kuk-Jin;Sung, Hong-Gye;Choi, Hwan-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.04a
    • /
    • pp.103-108
    • /
    • 2011
  • The turbulent mixing of a kerosene/liquid oxygen coaxial swirl injector under supercritical pressures have been numerically investigated. Kerosene surrogate models are proposed for the kerosene thermodynamic properties. Turbulent numerical model is based on LES(Large Eddy Simulation) with real-fluid transport and thermodynamics over the entire pressure range; Soave modification of Redlich-Kwong equation of state, Chung's model for viscosity/conductivity, and Fuller's theorem for diffusivity to take account Takahashi's compressible effect. The effect of operating pressure on thermodynamic properties and mixing dynamics inside an injector and a combustion chamber are investigated. Power spectral densities of pressure fluctuations in the injector under various chamber pressure are analyzed.

  • PDF

The Flame Stability and the Emission Characteristics of Turbulent Premixed Flat Burner (난류예혼합 플랫버너의 화염 안정성 및 배출가스 특성)

  • Lee, Y.H.;Lee, J.S.;Lee, D.H.
    • Journal of the Korean Institute of Gas
    • /
    • v.11 no.1 s.34
    • /
    • pp.1-8
    • /
    • 2007
  • The purpose of this study is to conduct a survey of the flame stability range and the emission characteristics for the optimum design of turbulent premixed flat burner. For that, the flame stability range was selected by the direct photography of the flame. And the mean temperature and CO, HC, $CO_{2}\;and\;O_{2}$ concentration distributions by changing the excess air ratio were measured. As results of this study, the flame stability range turned out to be getting narrower as fuel flow was increased. The blue flame mode was more excellent than any other flame modes in the emission characteristics by excess air ratio change. And the emission characteristics by fuel flow change were best at fuel flow 1l/min. Also, we found combustion noise during experiment of flame stability range. It had nothing do with excess air ratio range.

  • PDF

Frequency Response of Turbulent Flow to Momentum Forcing in a Channel with Wall Blowing (질량분사가 있는 채널 내부 난류 유동의 외부교란에 대한 주파수 특성)

  • Na, Yang;Lee, Chang-Jin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.1
    • /
    • pp.64-72
    • /
    • 2010
  • Due to the interaction between main oxidizer flow and the wall injected flow resulting from the regression process, a specific time characteristics identified in the frequency spectrum of streamwise velocity is generated in the hybrid rocket motor. In order to understand the response of the turbulent flow to two different types of external momentum forcing, LES analysis was conducted without considering the combustion. It turns out that both concentrated and distributed forcings do not lead to the disastrous resonance phenomenon. Energy contents are enhanced due to the added momentum but the peak frequency was not modified in the turbulent flow near the end of the rocket motor. Natural frequency of the flow system should be taken into account to further pursue the instability issue by using external forcing.

Numerical simulation of combustor afterward sprayed in hot product stream (고온기류중에 재분사된 연소기 후류의 수치해석)

  • Kim, Tae-Han;Gwon, Hyeong-Jeong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.7
    • /
    • pp.841-848
    • /
    • 1997
  • Combustion of gaseous fuel combustor in a high temperature vitiated air stream was studied with computer simulation. It is for application to afterburner of gas turbine engine which the exact mechanism is not yet clarified. As the jet velocity from fuel nozzle is very high and the geometry of combustor is three dimensional complex structure, many time and money are required to have good results. To consider this demerit, it is simplified to 2-dimensional and modified with the nozzle hole area to same area of annual status. As the thickness of annual is too thin, it is to divide with the many grids for reasonable results. Accordingly, new method which injected fuel mass, momentum and energy are added to source terms of each governing conservation equation as a source terms is introduced like as two phase analysis. Reaction rate is determined by taking into account the Arrhenius reaction based on a single step reaction mechanism. It is focused to temperature and product concentration distribution at each equivalence ratio of inlet hot product.

The Spray Behavior Analysis and Space Distribution of Mixture in Transient Jet Impinging on Piston Cavity (비정상 충돌 분류의 Cavity형상에 따른 공간 농도 분포 및 거동해석)

  • Lee, S.S.;Kim, K.M.;Kim, B.G.;Chang, S.S.;Ha, J.Y.
    • Journal of ILASS-Korea
    • /
    • v.1 no.2
    • /
    • pp.16-23
    • /
    • 1996
  • In case of a high-speed D.I. diesel engine. the injected fuel spray is unavoidable that the impinging on the wall of piston cavity and in this case the geometry of piston cavity has a great influence on the atomization structure and air flow fields. In the field of combustion and in many other spray applications, there are clear evidence of correlation between spray structure and emission of pollutants. Ordinary, the combustion chamber of driving engine have unsteady turbulent flow be attendant on such as the change of temperature, velocity and pressure. So the analysis of spray behavior is difficult. In this study, a single spray was impinged on each cavity wall at indicated angle in a quiescent atmosphere at room temperature and pressure, as being the simplest case, and 3 types of piston cavity such as Dish, Toroidal and Re-entrant type was tested for analyzing the influence of cavity geometry. And hot wire probe was used for analyze non-steady flow characteristics of impinging spray, and to investigate the behavior of spray, the aspects of concentration c(t), standard deviation $\sigma(t)$ and variation factor (v.f.) was measured with the lapse of time.

  • PDF

NOx Reduction by Acoustic Excitation on Coaxial Air Stream in Lifted Turbulent Hydrogen Non-Premixed Flame (부상된 수소난류확산화염에서 동축공기의 음향가진에 의한 NOx 저감)

  • Heo, Pil-Won;Oh, Jeong-Seog;Yoon, Young-Bin
    • Journal of the Korean Society of Combustion
    • /
    • v.14 no.1
    • /
    • pp.31-38
    • /
    • 2009
  • The effects of acoustic excitation of coaxial air on mixing enhancement and reduction of nitrogen oxides (NOx) emission were investigated. A compression driver was attached to the coaxial air supply tube to impose excitation. Measurements of NOx emission with frequency sweeping were performed to observe the trend of NOx emission according to the fuel and air flow conditions and to inquire about the effective excitation frequency for reducing NOx. Then, Schlieren photographs were taken to visualize the flow field and to study the effect of excitation. In addition, phase-locked particle image velocimetry (PIV) was performed to acquire velocity field for each case and to investigate the effect of vortices more clearly. Direct photographs and OH chemiluminescence photographs were taken to study the variation of flame length and reaction zone. It was found that acoustic forcing frequencies close to the resonance frequencies of coaxial air supply tube could reduce NOx emission. This NOx reduction was influenced by mixing enhancement due to large-scale vortices formed by fluctuation of coaxial air jet velocity.

  • PDF

Thermal and Flow Characteristics of Fluid with Fuel Type and Equivalence Ratio in Flame Spray Process (연료 종류 및 당량비에 따른 Flame Spray 화염장의 열-유동 특성 연구)

  • Lee, Jae Bin;Kim, Dae Yun;Shin, Dong Hwan;Lee, Seong Hyuk
    • Journal of ILASS-Korea
    • /
    • v.18 no.4
    • /
    • pp.202-208
    • /
    • 2013
  • The present study aims to investigate the flow characteristics with respect to fuel type and equivalence ratio in the flame spray coating process. The flame spray flow is characterized by much complex phenomena including combustion, turbulent flows, and combined heat transfer. The present study numerically simulated the flam spray process and examined the gas dynamics involving combustion, gas temperature and velocity distributions in flame spray process by using commercial computational fluid dynamics (CFD) code of FLUENT (ver. 13.0). In particular, we studied the effect of fuel type and equivalence ratio on thermal and flow characteristics which could substantially affect the coating performance. From the results, it was found that the gas temperature distributions were varied with different fuels because of reaction times were different according to the fuel type. The equivalence ratio also could change the spatial flame distribution and the characteristics of coated layer on the substrate.

An Experimental Study for the Effect of Intake Port Flows on the Tumble Generation and Breakdown in a Motored Engine (모터링엔진의 흡기포트 유동변화에 따른 텀블생성 및 소멸에 관한 실험적 연구)

  • 강건용;이진욱;정석용;백제현
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.4
    • /
    • pp.912-919
    • /
    • 1994
  • The engine combustion is one of the most important processes affecting performance and emissions. One effective way to improve the engine combustion is to control the motion of the charge inside a cylinder by means of optimum induction system design, because the flame speed is mainly determined by the turbulence at compression(TDC) process in S.I. engine. It is believed that the tumble and swirl motion generated during intake stroke breaks down into small-scale turbulence in the compression stroke of the cycle. However, the exact nature of this relationship is not well known. This paper describes the tumble flow measurements inside the cylinder of a 4-valve S.I. engine using laser Doppler velocimetry(LDV) under motoring(non-firing) conditions. This is conducted on an optically assesed single cylinder research engine under motored conditions at an engine speed of 1000rpm. Three different cylinder head intake port configurations are studied to develop a better understanding the tumble flow generation, development, and breakdown mechanisms.

The Effect of Intake Port Configurations on the Turbulence Characteristics During Compression Stroke in a Motored Engine (흡입포트형상에 따른 모터링엔진내 압축과정 난류특성 연구)

  • 강건용;이진욱;정석용;백제현
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.4
    • /
    • pp.920-932
    • /
    • 1994
  • The combustion phenomena of a reciprocating engine is one of the most important processes affecting performance and emissions. One effective way to improve the engine combustion is to control the motion of the charge inside a cylinder by means of optimum induction system design, because the flame speed is mainly determined by the turbulence at compression(TDC) process in S.I. engine. It is believed that the tumble and swirl motion generated during intake breaks down into small-scale turbulence in the compression stroke of the cycle. However, the exact nature of their relationship is not well known. This paper describes cycle resolved LDV measurement of turbulent flow inside the cylinder of a 4-valve engine under motoring(non-firing) conditions, and studies the effect of intake port configurations on the turbulence characteristics using following parameters ; Eulerian temporal autocorrelation coefficient, turbulence energy spectral density function, Taylor micro time scale, integral time scale, and integral length scale.

Numerical study on extinction and acoustic response of diluted hydrogen-air diffusion flames with detailed and reduced chemistry (상세 및 축소 반응 메커니즘을 이용한 희석된 수소-공기 확산화염의 소염과 음향파 응답 특성에 관한 수치해석)

  • Son, Chae-Hun;Jeong, Seok-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.11
    • /
    • pp.1527-1537
    • /
    • 1997
  • Extinction characteristics and acoustic response of hydrogen-air diffusion flames at various pressures are numerically studied by employing counterflow diffusion flame as a model flamelet in turbulent flames in combustion chambers. The numerical results show that extinction strain rate increases linearly with pressure and then decreases, and increases again at high pressures. Thus, flames are classified into three pressure regimes. Such nonmonotonic behavior is caused by the change in chemical kinetic behavior as pressure rises. The investigation of acoustic-pressure response in each regime, for better understanding of combustion instability, shows different characteristics depending on pressure. At low pressures, pressure-rise causes the increase in flame temperature and chain branching/recombination reaction rates, resulting in increased heat release. Therefore, amplification in pressure oscillation is predicted. Similar phenomena are predicted at high pressures. At moderate pressures, weak amplification is predicted since flame temperature and chain branching reaction rate decreases as pressure rises. This acoustic response can be predicted properly only with detailed chemistry or proper reduced chemistry.