• Title/Summary/Keyword: Turbulence-Structure Interaction

Search Result 100, Processing Time 0.03 seconds

Flow structures around rectangular cylinder in the vicinity of a wall

  • Derakhshandeh, J.F.;Alam, Md. Mahbub
    • Wind and Structures
    • /
    • v.26 no.5
    • /
    • pp.293-304
    • /
    • 2018
  • A numerical study is conducted on the flow characteristics of a rectangular cylinder (chord-to-width ratio C/W = 2 - 10) mounted close to a rigid wall at gap-to-width ratios G/W = 0.25 - 6.25. The effects of G/W and C/W on the Strouhal number, vortex structure, and time-mean drag and lift forces are examined. The results reveal that both G/W and C/W have strong influences on vortex structure, which significantly affects the forces on the cylinder. An increase in G/W leads to four different flow regimes, namely no vortex street flow (G/W < 0.75), single-row vortex street flow ($0.75{\leq}G/W{\leq}1.25$), inverted two-row vortex street flow ($1.25<G/W{\leq}2.5$), and two-row vortex street flow (G/W > 2.5). Both Strouhal number and time-mean drag are more sensitive to C/W than to G/W. For a given G/W, Strouhal number grows with C/W while time-mean drag decays with C/W, the growth and decay being large between C/W = 2 and 4. The time-mean drag is largest in the single-row vortex street regime, contributed by a large pressure on the front surface, regardless of C/W. A higher C/W, in general, leads to a higher time-mean lift. The maximum time-mean lift occurs for C/W = 10 at G/W = 0.75, while the minimum time-mean lift appears for C/W = 2 at the same G/W. The impact of C/W on the time-mean lift is more substantial in single-row vortex regime. The effect of G/W on the time-mean lift is larger at a larger C/W.

Measurement of the Equivalent Resistance Coefficient for Multi-piers in Open Channel (개수로 다열기둥에 대한 상당저항계수의 측정)

  • Kwon, Kab Keun;Choi, Junwoo;Yoon, Sung Bum
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.6B
    • /
    • pp.635-642
    • /
    • 2008
  • The influence of unsubmerged resistance bodies in a channel turbulence flow on energy loss was investigated by hydraulic experiments. Square-shaped multi-piers were used for unsubmerged structure or rigid vegetation in an open channel. In experimental channel flows multi-piers were arranged in double or single row along the channel direction, and mean-concept uniform elevations were attained and measured with a set of discharges and channel slopes. Applying the experimental results to the Manning equation, the equivalent resistance coefficient n, which implicates flow resistance and energy loss due to bottom friction as well as drag, was evaluated with varying the interval of piers and the uniform water depth. And the experimentally evaluated n values were compared with the semi-theoretical formula of the equivalent resistance coefficient derived from momentum analysis including a drag interaction coefficient. From the comparisons it was found that the interaction effect of piers on flow resistance was significant for the overall energy losses in a channel flow. The n values decrease when the interval of piers in flow-direction is less than about 2.2 times of the pier width. And it was also found that the n values increase with the 2/3 power of water depth in the theoretical formula, since the drag interaction coefficient was found to be mostly dependent on the interval of piers.

Numerical Simulation of Flow Characteristics behind a Circular Patch of Vegetation using a Two-Dimensional Numerical Model (2차원 수치모형을 이용한 원형군락 하류의 흐름특성 수치모의)

  • Kim, Hyung Suk;Park, Moonhyeong
    • Journal of Korea Water Resources Association
    • /
    • v.48 no.11
    • /
    • pp.891-903
    • /
    • 2015
  • This paper presents numerical simulations of flow around a circular patch of vegetation using a depth-averaged two-dimensional numerical model which is capable of simulating flow structure in vegetated open channel. In order to account for vegetation effect, drag force terms are included in governing equations. Numerical simulations are conducted with various solid volume fractions (SVF). Flow passes through a circular patch and low velocity region, which is called wake region, is formed downstream of the patch. When SVF is larger than 0.08, a recirculation is observed. The location of the recirculation is moved further downstream as SVF decreases. Von-$K{\acute{a}}rm{\acute{a}}n$ vortex street is developed beyond the wake region due to interaction between two shear layers induced by a circular patch of vegetation. The vortex is developed as SVF is larger than 0.08, and the location of the vortex is consistent with the maximum of turbulence kinetic energy. The location of the peak of turbulence kinetic energy is moved further downstream as SVF decreases.

Vortex-induced vibration of a long flexible cylinder in uniform cross-flow

  • Ji, Chunning;Peng, Ziteng;Alam, Md. Mahbub;Chen, Weilin;Xu, Dong
    • Wind and Structures
    • /
    • v.26 no.5
    • /
    • pp.267-277
    • /
    • 2018
  • Numerical simulations are performed of a long flexible cylinder undergoing vortex-induced vibration at a Reynolds number of 500. The cylinder is pinned at both ends, having an aspect ratio of 100 (cylinder length to cylinder diameter) and a mass ratio of 4.2 (structural mass to displaced fluid mass). Temporal and spatial information on the cross-flow (CF) and in-line (IL) vibrations is extracted. High modal vibrations up to the $6^{th}$ in the CF direction and the $11^{th}$ in the IL direction are observed. Both the CF and IL vibrations feature a multi-mode mixed pattern. Mode competition is observed. The $2^{nd}$ mode with a low frequency dominates the IL vibration and its existence is attributed to a wave group propagating back and forth along the span. Distributions of fluid force coefficients are correlated to those of the CF and IL vibrations along the span. Histograms of the x'-y motion phase difference are evaluated from the total simulation time and a complete vibration cycle representing the standing or travelling wave pattern. Correlations between the phase difference and the vibrations are discussed. Vortex structures behind the cylinder show an interwoven near-wake pattern when the standing wave pattern dominates, but an oblique near-wake pattern when the travelling wave pattern prevails.

Flow Characteristic of Cyclone Dust Separator for Marine Sweeping Machine (연마장비용 사이클론 집진기의 유동해석)

  • Park, MinJae;Jin, Taeseok
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.24 no.5
    • /
    • pp.512-517
    • /
    • 2014
  • This paper describes the development of new sweeping machine based on Cyclone Technology, which maintains constant suction power and uses it in a industrial applications as a method for dust removed from grinding work. The performance of a cyclone separator is determined by the turbulence characteristics and particle-particle interaction. To achieve this goal, we design cyclone technology based dust separator for sweeping machine has been proposed as a system which is suitable to work utilizing dust suction alternative to conventional manual system. and Numerical analysis with computational fluid dynamics(CFD) was carried out to investigate the working fluid that flow into cyclone dust separator in order to design optimal structure of the sweeping machine. The validation of cyclone model with CFD is carried out by comparing with experimental results.

Dispersion Simulation of Hydrogen in Simple-shaped Offshore Plant (단순 형상 해양플랜트 내의 수소의 분산 시뮬레이션)

  • Seok, Jun;Heo, Jae-Kyung;Park, Jong-Chun
    • Journal of Ocean Engineering and Technology
    • /
    • v.27 no.5
    • /
    • pp.105-114
    • /
    • 2013
  • Lots of orders of special vessels and offshore plants for developing the resources in deepwater have been increased in recent. Because the most of accidents on those structures are caused by fire and explosion, many researchers have been investigated quantitatively to predict the cause and effect of fire and explosion based on both experiments and numerical simulations. The first step of the evaluation procedures leading to fire and explosion is to predict the dispersion of flammable or toxic material, in which the released material mixes with surrounding air and be diluted. In particular turbulent mixing, but density differences due to molecular weight or temperature as well as diffusion will contribute to the mixing. In the present paper, the numerical simulation of hydrogen dispersion inside a simple-shaped offshore structure was performed using a commercial CFD program, ANSYS-CFX. The simulated results for concentration of released hydrogen are compared to those of experiment and other simulation in Jordan et al.(2007). As a result, it is seen that the present simulation results are closer to the experiments than other simulation ones. Also it seems that the hydrogen dispersion is closely related to turbulent mixing and the selection of the turbulence model properly is significantly of importance to the reproduction of dispersion phenomena.

Three-Dimensional Flow Characteristics and Wave Height Distribution around Permeable Submerged Breakwaters; PART II - with Beach (잠제 주변의 파고분포 및 흐름의 3차원 특성; PART II-해빈이 있을 경우)

  • Hur, Dong-Soo;Lee, Woo-Dong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.1B
    • /
    • pp.115-123
    • /
    • 2008
  • In the present study, a three dimensional hydrodynamic characteristics around the fully submerged dual breakwaters with a sand beach has been investigated numerically using a 3-D numerical scheme, which can determine the eddy viscosity with LES turbulence model and is able to consider wave-structure-seabed interaction in 3-dimensional wave field (LES-WASS-3D), recently developed by Hur and Lee (2007). Based on the numerical experiments, strong vortices can be generated fore and aft edges of the structures, and propagate lee sides. Thus relatively large circulation flows are occurred around submerged breakwaters. The 3-D flow hydrodynamic characteristics have been examined by mean flows and mean vortices for various x-y, x-z sections and y-z layers. Wave height distribution and wave set-up around and over submerged breakwaters, and breaking point migration toward shore side is discussed in detail.

Effect of the Slope Gradient of a Permeable Submerged Breakwater on Wave Field around It (투과성잠제의 비탈면경사가 주변 파동장에 미치는 영향)

  • Hur, Dong Soo;Choi, Dong Seok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.2B
    • /
    • pp.249-259
    • /
    • 2008
  • The present paper studies the effect of the slope gradient of a fully permeable submerged breakwater using a newly developed numerical model that is able to consider the flow through a porous midium with inertial, laminar and turbulent resistance terms, i.e. simulate directly WAve-Structure (submerged breakwater)-Sand seabed interaction and can determine the eddy viscosity with LES turbulence model in 2-Dimensional wave field (LES-WASS-2D). The developed model was validated through the comparison with an existing experimental data, and further used for various numerical experiments in oder to investigate the complicated hydrodynamics on the varying slope gradient of permeable submerged breakwater. We found an acceptable phenomenon, as we expect intuitively, that reflection and transmission coefficients decrease simultaneously as slope gradient decrease. In addition, the breaking point, the circulation flow and mean vorticity around a submerged breakwater are throughly discussed.

Numerical Simulation of Interaction between Composite Breakwater and Seabed under Regular Wave Action by olaFlow Model (olaFlow 모델에 의한 규칙파작용 하 혼성방파제-해저지반의 상호작용에 관한 수치시뮬레이션)

  • Bae, Ju-Hyun;Lee, Kwang-Ho;Jung, Uk Jin;Kim, Do-Sam
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.30 no.6
    • /
    • pp.270-285
    • /
    • 2018
  • The behavior of wave-induced pore water pressure inside the rubble mound and seabed, and the resultant structure failure are investigated, which are used in design of the composite breakwater representing the coastal and harbor structures. Numerical simulation techniques have been widely used to assess these behaviors through linear and nonlinear methods in many researches. While the combination of strongly nonlinear analytical method and turbulence model have not been applied yet, which can simulate these characteristics more accurately. In this study, olaFlow model considering the wave-breaking and turbulent phenomena is applied through VOF and LES methods, which gives more exact solution by using the multiphase flow analytical method. The verification of olaFlow model is demonstrated by comparing the experimental and numerical results for the interactions of regular waves-seabed and regular waves-composite breakwater-seabed. The characteristics of the spatial distributions of horizontal wave pressure, excess-pore-water pressure, mean flow velocity and mean vorticity on the upright caisson, and inside the rubble mound and seabed are discussed, as well as the relation between the mean distribution of vorticity size and mean turbulent kinetic energy. And the stability of composite breakwater are also discussed.

Multi-fidelity uncertainty quantification of high Reynolds number turbulent flow around a rectangular 5:1 Cylinder

  • Sakuma, Mayu;Pepper, Nick;Warnakulasuriya, Suneth;Montomoli, Francesco;Wuch-ner, Roland;Bletzinger, Kai-Uwe
    • Wind and Structures
    • /
    • v.34 no.1
    • /
    • pp.127-136
    • /
    • 2022
  • In this work a multi-fidelity non-intrusive polynomial chaos (MF-NIPC) has been applied to a structural wind engineering problem in architectural design for the first time. In architectural design it is important to design structures that are safe in a range of wind directions and speeds. For this reason, the computational models used to design buildings and bridges must account for the uncertainties associated with the interaction between the structure and wind. In order to use the numerical simulations for the design, the numerical models must be validated by experi-mental data, and uncertainties contained in the experiments should also be taken into account. Uncertainty Quantifi-cation has been increasingly used for CFD simulations to consider such uncertainties. Typically, CFD simulations are computationally expensive, motivating the increased interest in multi-fidelity methods due to their ability to lev-erage limited data sets of high-fidelity data with evaluations of more computationally inexpensive models. Previous-ly, the multi-fidelity framework has been applied to CFD simulations for the purposes of optimization, rather than for the statistical assessment of candidate design. In this paper MF-NIPC method is applied to flow around a rectan-gular 5:1 cylinder, which has been thoroughly investigated for architectural design. The purpose of UQ is validation of numerical simulation results with experimental data, therefore the radius of curvature of the rectangular cylinder corners and the angle of attack are considered to be random variables, which are known to contain uncertainties when wind tunnel tests are carried out. Computational Fluid Dynamics (CFD) simulations are solved by a solver that employs the Finite Element Method (FEM) for two turbulence modeling approaches of the incompressible Navier-Stokes equations: Unsteady Reynolds Averaged Navier Stokes (URANS) and the Large Eddy simulation (LES). The results of the uncertainty analysis with CFD are compared to experimental data in terms of time-averaged pressure coefficients and bulk parameters. In addition, the accuracy and efficiency of the multi-fidelity framework is demonstrated through a comparison with the results of the high-fidelity model.