• 제목/요약/키워드: Turbulence structure

검색결과 484건 처리시간 0.029초

Turbulent Flow Field Structure of Initially Asymmetric Jets

  • Kim, Kyung-Hoon;Kim, Bong-Whan;Kim, Suk-Woo
    • Journal of Mechanical Science and Technology
    • /
    • 제14권12호
    • /
    • pp.1386-1395
    • /
    • 2000
  • The mear field structure of round turbulent jets with initially asymmetric velocity distributions is investigated experimentally. Experiments are carried out using a constant temperature hot-wire anemometry system to measure streamwise velocity in the jets. The measurements are undertaken across the jet at various streamwise stations in a range starting from the jet exit plane and up to a downstream location of twelve diameters. The experimental results include the distributions of mean and instantaneous velocities, vorticity field, turbulence intensity, and the Reynolds shear stresses. The asymmetry of the jet exit plane was obtained by using circular cross-section pipes with a bend upstream of the exit. There pipes used here include a straight pipe, and 90 and 160 degree-bend pipes. Therefore, at the upstream of the upstream of the pipe exit, secondary flow through the bend mean streamwise velocity distribution could be controlled by changing the curvature of pipes. The jets into the atmosphere have two levels of initial velocity skewness in addition to an axisymmetric jet from a straight pipe. In case of the curved pipe, a six diameter-long straight pipe section follows the bend upstream of the exit. The Reynolds number based on the exit bulk velocity is 13,400. The results indicate that the near field structure is considerably modified by the skewness of an initial mean velocity distribution. As the skewness increases, the decay rate of mean velocity at the centerline also increases.

  • PDF

자유유동 난류강도가 원형 곡면위의 분사홀 상류에서의 막냉각에 미치는 영향에 대한 연구 (Effect of Free-Stream Turbulence on Film-Cooling Upstream of Injection Hole on a Cylindrical Surface)

  • 서형준;국건;이준식;이상우
    • 대한기계학회논문집
    • /
    • 제18권3호
    • /
    • pp.645-652
    • /
    • 1994
  • The leading edge of a turbine blade was simulated as a circular cylindrical surface. The effect of free-stream turbulence on the mass transfer upstream of the injectionhole has been investigated experimentally. The effects of injection location, blowing ratio on the Sherwood number distribution were examined as well. The mass transfer coefficients were measured by a naphthalene sublimation technique. The free-stream Reynolds number based on the cylinder diameter is 53,000. Other conditions investigated are: free-stream turbulence intensities of 3.9% and 8.0%, injection locations of $40^{\circ}$, $50^{\circ}$, and $60^{\circ}$ from the front stagnation point of the cylinder, and blowing ratios of 0.5 and 1.0. The role of the horseshoe vortex formed upstream edge of the injected jet is dicussed in detail. When the blowing ratio is unity, and the coolant jet is injected at $40^{\circ}$, the mass transfer upstream of the jet is not affected by the coolant jet at all. On the other hand, when the injection hole is located beyond $50^{\circ}$, the mass transfer upstream edge of the injection hole suddenly increases due to the formation of the horseshoe vortex, but it dereases as the free-stream turbulence intensity increases because the strength of the horseshoe vortex structure becomes weakened. The role of the horseshoe vortex is clearly evidenced by placing a rigid rod at the injection hole instead of issuing the jet. In the case of the rigid rod, the spanwise Sherwood number upstream of the injection hole is much larger due to the intense influence of the horseshoe vortex.

PIV기법을 이용한정사각실린더의 근접후류에 관한 연구 (II)- 난류유동 특성 - (A Study on the Near Wake of a Square Cylinder Using Particle Image Velocimetry (II)- Turbulence Characteristics -)

  • 이만복;김경천
    • 대한기계학회논문집B
    • /
    • 제25권10호
    • /
    • pp.1417-1426
    • /
    • 2001
  • Turbulent flow characteristics in the near wake of a square cylinder have been studied experimentally by using a Digital PIV method. Experiments are performed at the Reynolds numbers of 1600 and 3900 based on the free-stream velocity and the square height. The ensemble averaged turbulence statistics are acquired from 2030 realizations of instantaneous fluctuating velocity field after the conventional Reynolds decomposition. The differences in turbulent intensity and Reynolds shear stress profiles fur both oases indicate that the effect of Reynolds number seems to be descernible mainly due to the occurrence of transition in the separated shear layer. Because of the periodic nature of vortex shedding process, transverse velocity fluctuations contribute dominantly , to turbulent kinetic energy distribution. A comparison with previous LDV data obtained at much higher Reynolds number shows a fairly good agreement each other. It turns out that the effect of Reynolds number diminishes as increasing Reynolds number, which is a well-known feature of a sharp-edged bluff body wake. The streamwise variation of turbulence intensities are compared with those from a circular cylinder along the centerline at the same Reynolds number. The overall magnitudes and the decay rates of turbulence intensities are quite similar, but some differences are noticeble especially in the transverse intensity variation.

Statistical characteristics of sustained wind environment for a long-span bridge based on long-term field measurement data

  • Ding, Youliang;Zhou, Guangdong;Li, Aiqun;Deng, Yang
    • Wind and Structures
    • /
    • 제17권1호
    • /
    • pp.43-68
    • /
    • 2013
  • The fluctuating wind induced vibration is one of the most important factors which has been taken into account in the design of long-span bridge due to the low stiffness and low natural frequency. Field measurement characteristics of sustained wind on structure site can provide accurate wind load parameters for wind field simulation and structural wind resistance design. As a suspension bridge with 1490 m main span, the Runyang Suspension Bridge (RSB) has high sensitivity to fluctuating wind. The simultaneous and continuously wind environment field measurement both in mid-span and on tower top is executed from 2005 up to now by the structural health monitoring system installed on this bridge. Based on the recorded data, the wind characteristic parameters, including mean wind speed, wind direction, the turbulence intensity, the gust factors, the turbulence integral length, power spectrum and spatial correlation, are analyzed in detail and the coherence functions of those parameters are evaluated using statistical method in this paper. The results indicate that, the turbulence component of sustain wind is larger than extremely strong winds although its mean wind speed is smaller; the correlation between turbulence parameters is obvious; the power spectrum is special and not accord with the Simiu spectrum and von Karman spectrum. Results obtained in this study can be used to evaluate the long term reliability of the Runyang Suspension Bridge and provide reference values for wind resistant design of other structures in this region.

대기 외란 상황에서 결맞음 빔결합을 통한 광학 에너지의 전달 방법 수치 모델링 (Numerical Modeling of Optical Energy Transfer Based on Coherent Beam Combination under Turbulent Atmospheric Conditions)

  • 나정균;김병호;차혜선;정윤찬
    • 한국광학회지
    • /
    • 제31권6호
    • /
    • pp.274-280
    • /
    • 2020
  • 본 논문에서는 결맞음 빔결합 방식을 이용한 원거리 광학 에너지 전달 방법에 있어서 대기 외란의 영향을 위상판 모델을 사용하여 수치해석하고 분석한다. 결맞음 빔결합 방식은 3채널로 구성하고, 전송 거리는 1~2 km, 각 채널별 위상 및 조사 방향은 적절한 방식으로 보정된 것으로 가정하며, 각 채널 빔들이 자유공간을 진행할 때 발생하는 대기 외란 영향은 위상판 모델로 정량화한다. 위상판은 구조상수 Cn2 값의 변동 범위 10-15에서 10-13 [m-2/3] 내에서 통계적으로 생성하여 구성한다. 특별히, 본 논의에서는 대기 요동의 강도가 최종 빔결합 효율에 미치는 영향을 분석하기 위해 위상판 모델의 구조 상수를 변화시켜가며 해당 목표 지점에서 3채널 결맞음 빔결합 방식을 통해 전송된 빔의 결합 형태, 왜곡 정도 및 빔결합 효율을 계산한다. 본 수치 모델을 통해 분석한 결과, 상기 주어진 대기 요동 조건하에서도 원거리 광학 에너지 전송에 결맞음 빔결합 방식을 사용할 경우, 수신부 유효 도달 전력을 비결맞음 빔결합 방식 대비 최소 3배 이상 확보할 수 있음을 확인할 수 있다. 본 수치 모델은, 원거리 광학 에너지 전송을 전산모사함에 있어서 다양한 형태의 대기 외란의 영향 및 빔결합 방식을 분석하는데 효과적으로 활용될 수 있을 것으로 기대한다.

원형 실린더 주위의 유동해석을 통한 URANS 난류 모델 성능 비교 (Evaluation of URANS Turbulence Models through the Prediction of the Flow around a Circular Cylinder)

  • 김민재;신지환;권래언;이건철
    • 한국군사과학기술학회지
    • /
    • 제17권6호
    • /
    • pp.861-867
    • /
    • 2014
  • In the present study, the flow around a circular cylinder at $Re=3.6{\time}10^6$ is numerically simulated using URANS approach. The objective of this study is to evaluate the turbulence models(Realizable k-${\varepsilon}$, RNG k-${\varepsilon}$) through the prediction of the unsteady flow characteristics around the cylinder. The time-averaged drag coefficients and vortex shedding phenomenon in the wake region are compared to available experimental data and other numerical results. The simulation with Realizable k-${\varepsilon}$ model is found to be more dissipative due to large eddy viscosity predicted in the wake region while the simulation with RNG k-${\varepsilon}$ model predicts a complex vortex shedding phenomenon with more coherent structures realistically.

정적 연소실내 난류 예혼합화염 전파의 시뮬레이션 (Simulation of Turbulent Premixed Flame Propagation in a Closed Vessel)

  • 권세진
    • 대한기계학회논문집
    • /
    • 제19권6호
    • /
    • pp.1510-1517
    • /
    • 1995
  • A theoretical method is described to simulate the propagation of turbulent premixed flames in a closed vessel. The objective is to develop and test an efficient technique to predict the propagation speed of flame as well as the geometric structure of the flame surfaces. Flame is advected by the statistically generated turbulent flow field and propagates as a wave by solving twodimensional Hamilton-Jacobi equation. In the simulation of the unburned gas flow field, following turbulence properties were satisfied: mean velocity field, turbulence intensities, spatial and temporal correlations of velocity fluctuations. It is assumed that these properties are not affected by the expansion of the burned gas region. Predictions were compared with existing experimental data for flames propagating in a closed vessel charged with hydrogen/air mixture with various turbulence intensities and Reynolds numbers. Comparisons were made in flame radius growth rate, rms flame radius fluctuations, and average perimeter and fractal dimensions of the flame boundaries. Two dimensional time dependent simulation resulted in correct trends of the measured flame data. The reasonable behavior and high efficiency proves the usefulness of this method in difficult problems of flame propagation such as in internal combustion engines.

Application of Constant Rate of Velocity or Pressure Change Method to Improve Annular Jet Pump Performance

  • Yang, Xuelong;Long, Xinping;Kang, Yong;Xiao, Longzhou
    • International Journal of Fluid Machinery and Systems
    • /
    • 제6권3호
    • /
    • pp.137-143
    • /
    • 2013
  • To improve annular jet pump (AJP) performance, new ways named constant rate of velocity/pressure change method (CRVC/CRPC) were adopted to design its diffuser. The design formulas were derived according to the assumption of linear velocity/pressure variation in the diffuser. Based on the two-dimensional numerical simulations, the effect of the diffuser profile and the included angle on the pump performance and the internal flow details has been analyzed. The predicted results of the RNG k-epsilon turbulence model show a better agreement with the experiment data than that of the standard and the realizable k-epsilon turbulence models. The AJP with the CRPC diffuser produces a linear pressure increase in the CRPC diffuser as expected. The AJP with CRPC/CRVC diffuser has better performance when the diffuser included angle is greater or the diffuser length is shorter. Therefore, the AJP with CRPC/CRVC diffuser is suitable for applications requiring space limitation and weight restriction.

이중분류버너화염의 미세구조에 관한 실험적 연구 (An experimental study on microstructure of doubled jet burner flame)

  • 장인갑;최경민;최병륜
    • 대한기계학회논문집B
    • /
    • 제20권7호
    • /
    • pp.2337-2346
    • /
    • 1996
  • One of the most useful method for increasing combustion loading of premixed flame is to strengthen the turbulent intensity of unburned mixture. It produces an important information to a design of efficient combustion equipment that analysing microstructure of strong turbulence premixed flame. The flame structure and characteristics are depend on the turbulence of unburned mixture. Therefore, to strengthen the turbulent intensity of unburned mixture make flame scale small and accomplish efficient combustion. We measured the velocity of local flame front movements, local eddy radius and local reaction zone thickness quantitatively with increasing turbulent intensity of unburned mixture. We researched the microstructure of flame using ion currents that react sensitively in the reaction zone. Consequently, the velocity of local flame front movements is depend on the velocity of unburned mixture and local eddy scale is to be small with increasing turbulent intensity. But there is no change in local reaction zone thickness with turbulence.

공기를 이용한 축소형 4노즐 클러스터드 엔진 저부 유동의 CFD 해석 검증 (A Study on the Accuracy of CFD Prediction for Small Scaled 4 Nozzle Clustered Engine Using Air)

  • 김성룡;김인선
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2011년도 제37회 추계학술대회논문집
    • /
    • pp.78-84
    • /
    • 2011
  • 공기를 이용한 축소형 4 노즐 클러스터드 엔진 저부 유동에 대한 CFD 해석을 수행하여 격자 및 차분법, 난류 모델에 따른 비교를 수행하였다. 해석 결과 Roe나 AUSM 차분에 따른 차이는 발견되지 않았으나, 난류 모델에 따른 차이는 적지 않은 것으로 나타났다. 본 연구의 결과로는 Spalart-Allmaras 1 방정식 난류 모델이 SST k-w 모델에 비하여 경향성을 잘 맞추는 것으로 드러났다. 엔진 저부의 마하수, 압력 속도 등의 변화를 분석하면, 엔진과 엔진 사이의 외부 노출 공간에서 유동의 목을 형성하는 것은 아닌 것으로 보이고 이는 노즐과 노즐 사이의 공간이 목을 형성한다는 일부 해석적 이론에서 가정한 상황과 약간 다른 것이다.

  • PDF