• 제목/요약/키워드: Turbulence Modeling

검색결과 251건 처리시간 0.026초

The Moderating Role of Environmental Turbulence between Learning Orientation and SME Performance in the Manufacturing Sector of Pakistan

  • SAJJAD, Ali;IBRAHIM, Yusnidah;SHAMSUDDIN, Jauriyah
    • 유통과학연구
    • /
    • 제20권5호
    • /
    • pp.1-11
    • /
    • 2022
  • Purpose: This study attemptsto investigate the moderating effects of environmental turbulence (ET) between learning orientation (LO) and SMEs' performance. Research design, data, and Methodology: To gain insights and provide implications for manufacturing SMEs in Pakistan, this study adopted simple random sampling to collect 379 valid responses. Data were collected through a self-administrative questionnaire from manufacturing SMEs owners/managers. Partial least squares of structural equation modeling have been used to test research hypotheses by using SmartPLS® 3.0 software. Results: The study's primary finding is that LO has a significantly positive effect on SMEs' performance and this relationship is strengthened under the moderating influence of environmental turbulence (ET). Conclusion: Environmental turbulence (ET) enables SMEs to focus on learning capability to get a more competitive advantage. Moreover, SMEs owner/managers ought to emphasize continuous learning that accentuates the capability to compete with environmental changes. Findings support notifying Pakistan's Small and Medium Enterprise Development Authority (SMEDA) in dealings with Manufacturing SMEs in terms of improving their internal capabilities. This research contributes to the literature as it provides a more detailed and in-depth explanation of distribution management-related issues faced by SMEs. This research carries a significant influence on literature and relevant Resource-based view and contingency theories.

Numerical simulation of a toroidal single-phase natural circulation loop with a k-kL-ω transitional turbulence model

  • Yiwa Geng;Xiongbin Liu;Xiaotian Li;Yajun Zhang
    • Nuclear Engineering and Technology
    • /
    • 제56권1호
    • /
    • pp.233-240
    • /
    • 2024
  • The wall friction correlations of oscillatory natural circulation loops are highly loop-specific, making it difficult to perform 1-D system simulations before obtaining specific experimental data. To better predict the friction characteristics, the nonlinear dynamics of a toroidal single-phase natural circulation loop were numerically investigated, and the transition effect was considered. The k-kL-ω transitional turbulence and k-ω SST turbulence models were used to compute the flow characteristics of the loop under different heating powers varying from 0.48 to 1.0 W/cm2, and the results of both models were compared with previous experiments. The mass flow rates and friction factors predicted by the k-kL-ω model showed a better agreement with the experimental data than the results of the k-ω SST model. The oscillation frequencies calculated using both models agreed well with the experimental data. The k-kL-ω transitional turbulence model provided better friction-factor predictions in oscillatory natural circulation loops because it can reproduce the temporal and spatial variation of the wall shear stress more accurately by capturing the movement of laminar, transition turbulent zones inside unstable natural circulation loops. This study shows that transition effects are a possible explanation for the highly loop-specific friction correlations observed in various oscillatory natural circulation loops.

엔진화염에 따른 천음속 유도탄의 항력 평가 (Drag Assessment of Transonic Missile due to Engine Plume)

  • 안창수;정석영
    • 한국전산유체공학회지
    • /
    • 제8권3호
    • /
    • pp.7-11
    • /
    • 2003
  • Accurate assessment of the effect of jet plume on the boattail pressure drag of transonic airbreathing missiles is very important to reduce drag and to satisfy the flight range and the required maneuver. Numerical results of drag analysis for boattail and base pressures due to jet plume are presented considering the turbulence modeling. Drag assessment due to the size of jet plume, the conditions of the exhaust gas, the configurations of the boattail, and transonic mach numbers is included.

Diffusion of passive contaminant from a line source in a neutrally stratified turbulent boundary layer

  • Kurbatskii, Albert F.;Yakovenko, Sergey N.
    • Wind and Structures
    • /
    • 제3권1호
    • /
    • pp.11-21
    • /
    • 2000
  • This paper presents results of modeling of the passive contaminant diffusion from a continuous line finite-size source located on the underlying surface of a neutral near-ground atmospheric layer obtained by using the non-local two-parameteric turbulence model and the transport equation of mean concentration. In the proposed diffusion model the turbulent diffusion coefficient changes not only with the vertical coordinate but also with the distance downstream from the source according to the experimental data. The results of the modeling reproduce structural features of the concentration field.

Turbulence Modeling at High Rotating Rates

  • Chun, Kun-Ho;Whang, Young-Don;Yoon, Han-Young;Kim, Hee-Chul;Zee, Sung-Quun
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 2004년도 추계학술발표회 발표논문집
    • /
    • pp.219-220
    • /
    • 2004
  • PDF

정수지 내 추적자 실험과 CFD(전산유체역학)의 상관관계 분석 (Case study comparisons of computational fluid dynamics modeling versus tracer test to evaluate the hydraulic efficiency of clearwell)

  • 김태균;최영준;조영만
    • 상하수도학회지
    • /
    • 제25권5호
    • /
    • pp.635-642
    • /
    • 2011
  • Hydraulic efficiency was a vital component in evaluating the disinfection capability of clearwell. Current practice evaluates these system based on the tracer test only. In this paper, CFD(Computational Fluid Dynamics) was applied on the clearwell for alternating or supplementing the tracer test. The baffle factor derived from the CFD modeling closely matched the values obtained from full scale tracer testing. And, for suggesting proper numerical model in clearwell; the turbulence model, discretization scheme, convergence criteria were investigated through separate simulation runs. The model validation was conducted by comparing the simulated data with experimental data. In the turbulence model, the realizable ${\kappa}-{\varepsilon}$ model and the standard ${\kappa}-{\varepsilon}$ model were found to be more appropriate than RNG ${\kappa}-{\varepsilon}$ model. The residuals of convergence criteria should be used as not $10^{-3}$ but $10^{-4}$ or $10^{-5}$. In discretization scheme, the difference of simulated values in 1st, 2nd, 3rd upwind scheme was found to be insignificant. Moreover, the result of this study suggest that CFD modeling can be a reliable alternative to tracer testing for evaluating the hydraulic efficiency.

Direct Numerical Simulation of Channel Flow with Wall Injection

  • Na, Yang
    • Journal of Mechanical Science and Technology
    • /
    • 제17권10호
    • /
    • pp.1543-1551
    • /
    • 2003
  • The present study investigates turbulent flows subject to strong wall injection in a channel through a Direct Numerical Simulation technique. These flows are pertinent to internal flows inside the hybrid rocket motors. A simplified model problem where a regression process at the wall is idealized by the wall blowing has been studied to gain a better understanding of how the near-wall turbulent structures are modified. As the strength of wall blowing increases, the turbulence intensities and Reynolds shear stress increase rapidly and this is thought to result from the shear instability induced by the injected flows at the wall. Also, turbulent viscosity grows rapidly as the flow moves downstream. Thus, the effect of wall-blowing modifies the state of turbulence significantly and more sophisticated turbulence modeling would be required to predict this type of flows accurately.

영역분할조건평균법을 이용한 난류예혼합화염내 난류운동에너지 생성에 관한 연구 (Analysis of Flame Generated Turbulence for a Turbulent Premixed Flame with Zone Conditional Averaging)

  • 임용훈;허강열
    • 한국연소학회지
    • /
    • 제8권4호
    • /
    • pp.15-23
    • /
    • 2003
  • The zone conditional two-fluid equations are derived and validated against DNS database of a premixed turbulent flame. The conditional statistics of major flow variables are investigated to understand the mechanism of flame generated turbulence. The flow field in burned zone shows substantially increased turbulent kinetic energy, which is highly anisotropic due to reaction kinematics across thin f1amelets. The transverse component may be larger than the axial component for a distributed pdf of the flamelet orientation angle, while the opposite occurs due to redistribution of turbulent kinetic energy and flamelet orientation normal to the flow at the end of a flame brush. The major source or sink terms of turbulent kinetic energy are the interfacial transfer by the mean reaction rate and the work terms by fluctuating pressure and velocity on a flame surface. Ad hoc modeling of some interfacial terms may be required for further application of the two-fluid model in turbulent combustion simulations.

  • PDF

Investigation on the Flow Field Characteristics of a Highly Underexpanded Pulsed Plasma Jet

  • Kim, Jong-Uk;Kim, Youn J.
    • Journal of Mechanical Science and Technology
    • /
    • 제15권12호
    • /
    • pp.1691-1698
    • /
    • 2001
  • In recent years, significant progress has been made in modeling turbulence behavior in plasma and its effect on transport. It has also been made in diagnostics for turbulence measurement; however, there is still a large gap between theoretical model and experimental measurements. Visualization of turbulence can improve the connection to theory and validation of the theoretical model. One method to visualize the flow structures in plasma is a laser Schlieren imaging technique. We have recently applied this technique and investigated the characteristics of a highly underexpanded pulsed plasma jet originating from an electrothermal capillary source. Measurements include temporally resolved laser Schlieren imaging of a precursor blast wave. Analysis on the trajectory of the precursor blast wave shows that it does not follow the scaling expected for a strong shock resulting from the instantaneous deposition of energy at a point. However, the shock velocity does scale as the square root of the deposited energy, in accordance with the point deposition approximation.

  • PDF

다양한 난류 모텔에 따른 익형 특성 예측 (PREDICTION OF AIRFOIL CHARACTERISTICS WITH VARIOUS TURBULENCE MODELING)

  • 김철완;이융교;이장연
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2007년도 춘계 학술대회논문집
    • /
    • pp.50-52
    • /
    • 2007
  • In the present paper, some difficulties encountered in predicting airfoil characteristics are described and solutions for those problems are discussed Since drag is determined by the amounts of pressure and, especially, shear stress, accurate estimation of shear stress is very crucial. However shear stress computation is dependent on the grid density and turbulence model, it should be consistent in preparing grid and turbulence model. When the transition from laminar to turbulent happen at the middle of airfoil, CFD solver should divide the region into laminar and turbulent region based on the transition location.

  • PDF