• Title/Summary/Keyword: Turbulence Flow

Search Result 2,260, Processing Time 0.038 seconds

Heat Transfer Characteristics of Radiation-Mixed Convection in a Three-Dimensional PCB Channel (3차원 PCB 채널내에서의 복사-혼합대류 열전달 특성)

  • Lee, J.H.;Park, K.W.;Pak, H.Y.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.8 no.4
    • /
    • pp.561-575
    • /
    • 1996
  • The interaction of turbulent mixed convection and surface radiation in a three-dimensional channel with the heated blocks is analyzed numerically. Two blocks are maintained at high temperature and the other bottom and horizontal walls are insulated. S-4 method is employed to calculate the effect of the radiative heat transfer. The low Reynolds number k-$\varepsilon$ model proposed by Launder and Sharma is used to estimate the turbulent influence on the heat transfer enhancement. From above modeling, the effects of various channel specifications on the flow and heat transfer characteristics are investigated. The variables used for the present study are Reynolds number, block spacing, the channel height spacing for block and the emissivity. Average Nusselt numbers along the block surfaces are correlated and presented in terms of Reynolds number, emissivity and dimensionless geometric parameters. For the range of conditions in this study, average Nusselt numbers along the block surfaces are strongly influenced by the Reynolds numbers and channel height spacing for block but weakly influenced by the block spacing and the emissivity of the adiabatic walls.

  • PDF

The Effect of the Gurney Flap on NACA 00XX Airfoil (NACA 00XX 익형에 대한 Gurney 플랩의 영향)

  • Yoo, Neung-Soo
    • Journal of Industrial Technology
    • /
    • v.22 no.A
    • /
    • pp.59-65
    • /
    • 2002
  • The objective of this study is to provide the quantitative and qualitative computational data about the aerodynamic performance of Gurney flap on NACA 00XX airfoils and to show the optimum Gurney flap height for each airfoil. The test was performed on 7 different airfoils from NACA 0006 to NACA0024, which have a 3% chord(=c) thickness interval. For every NACA 00XX airfoil, Gurney flap heights were changed by 0.5% or 0.25% chord interval from 0 to 2.0%c to study their effects. The aerodynamic characteristics of clean and Gurney flap airfoil were compared, and the influences of Gurney flap on each airfoil were compared. As a CFD (Computational Fluid Dynamics) solver, FLUENT, based on Navier-Stokes code, was used to calculate the flow field around the airfoil. The fully-turbulent results were obtained using the standard $k-{\varepsilon}$ two-equation turbulence model. The test results showed that Gurney flap increased the lift coefficient much more than the drag coefficient over a certain range of the lift coefficient, so the lift-to-drag ratio, which is the important index of airfoil performance, was increased. Based on the test results, the relationship between the airfoil thickness and the optimum Gurney flap heights was suggested.

  • PDF

A Non-linear Low-Reynolds-Number Heat Transfer Model for Turbulent Separated and Reattaching Flows (난류박리 및 재부착 유동에 대한 저레이놀즈수 비선형 열전달 모형의 개발)

  • Rhee, Gwang-Hoon;Sung, Hyung-Jin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.2
    • /
    • pp.316-323
    • /
    • 2000
  • A nonlinear low-Reynolds-number heat transfer model is developed to predict turbulent flow and heat transfer in separated and reattaching flows. The $k-{\varepsilon}-f_{\mu}$ model of Park and Sung (1997) is extended to a nonlinear formulation, based on the nonlinear model of Gatski and Speziale (1993). The limiting near-wall behavior is resolved by solving the $f_{\mu}$ elliptic relaxation equation. An improved explicit algebraic heat transfer model is proposed, which is achieved by applying a matrix inversion. The scalar heat fluxes are not aligned with the mean temperature gradients in separated and reattaching flows; a full diffusivity tensor model is required. The near-wall asymptotic behavior is incorporated into the $f_{\lambda}$ function in conjunction with the $f_{\mu}$ elliptic relaxation equation. Predictions of the present model are cross-checked with existing measurements and DNS data. The model preformance is shown to be satisfactory.

Prediction of Changes in Filling Time and Temperature of Hydrogen Tank According to SOC of Hydrogen (수소 잔존 용량에 따른 수소 탱크 충전 시간 및 온도 변화 예측)

  • LEE, HYUNWOO;OH, DONGHYUN;SEO, YOUNGJIN
    • Journal of Hydrogen and New Energy
    • /
    • v.31 no.4
    • /
    • pp.345-350
    • /
    • 2020
  • Hydrogen is an green energy without pollution. Recently, fuel cell electric vehicle has been commercialized, and many studies have been conducted on hydrogen tanks for vehicles. The hydrogen tank for vehicles can be charged up to 70 MPa pressure. In this study, the change in filling time, pressure, and temperature for each hydrogen level in a 59 L hydrogen tank was predicted by numerical analysis. The injected hydrogen has the properties of real gas, the temperature is -40℃, and the mass flow rate is injected into the tank at 35 g/s. The initial tank internal temperature is 25℃. Realizable k-epsilon turbulence model was used for numerical analysis. As a result of numerical analysis, it was predicted that the temperature, charging time, and the mass of injected hydrogen increased as the residual capacity of hydrogen is smaller.

Numerical Study on the Stabilization of Turbulent Swirling Lifted Premixed Syngas Flames (석탄가스 난류선회유동 예혼합부상화염의 안정성 해석)

  • Kang, Sung-Mo;Lee, Jeong-Won;Kim, Yong-Mo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.349-352
    • /
    • 2008
  • This study has numerically modeled the combustion processes of the turbulent swirling premixed lifted syngas flames in the low-swirl burner (LSB). In these turbulent swirling premixed flames, the four tangentially-injected air jets induce the turbulent swirling flow which plays the crucial role of stabilizing the turbulent lifted flames. In the present approach, the turbulence-chemistry interaction is represented by the level-set based flamelet model. Numerical results indicate clearly that the present level-set based flamelet approach has realistically simulated the structure and stabilization mechanism of the turbulent swirling premixed lifted flames in the low-swirl burner. Computations are made for the wide range of the syngas chemical composition and the dilution level at two pressure conditions (1.0, 5.0 bar). Numerical results indicate that the lifted height in the LSB is increased by decreasing the H2 percentage and increasing the dilution level at the given equivalence ratio. It is also found that the flashback is occurred for the hydrogen composition higher than 80% at the equivalence ratio, 0.8. However, at the syngas composition range in the IGCC system, the stable lean-premixed lifted flames are formed at the low-swirl burner.

  • PDF

Parametric Sensitivity of the Flow Characteristics on Pulverized Coal Gasification (유동변수들이 석탄가스화에 미치는 민감도에 대한 수치적연구)

  • Cho, Han-Chang;Shin, Hyun-Dong
    • Journal of the Korean Society of Combustion
    • /
    • v.4 no.1
    • /
    • pp.1-15
    • /
    • 1999
  • In order to analyze the sensitivity on the pulverized coal flames of the several variables, a numerical study was conducted at the gasification process. Eulerian approach is used for the gas phase, whereas lagrangian approach is used for the solid phase. Turbulence is modeled using the standard $k-{\varepsilon}$ model. The turbulent combustion incorporates eddy dissipation model. The radiation was solved using a Monte-Carlo method. One-step two-reaction model was employed for the devolatilization of Kideco coal. In pulverized flame of long liftoff height, the initial turbulent intensity seriously affects the position of flame front. The radiation heat transfer and wall heat loss ratio distort the temperature distributions along the reactor wall, but do not influence the reactor performance such as coal conversion, residence time and flame front position. The primary/secondary momentum ratio affects the position of flame front, but the coal burnout is only slightly influenced. The momentum ratio is a variable only associated with the flame stabilization such as flame front position. The addition of steam in the reactor has a detrimental effect on all the aspects, particularly reactor temperature and coal burnout.

  • PDF

Experimental and Computational Studies of FSS-RSS Phenomena in an Over-Expanded Nozzle (과팽창 노즐 내에 발생하는 FSS-RSS 현상에 관한 실험적 및 수치해석적 연구)

  • Lee, Jong-Sung;Kim, Heuy-Dong
    • Journal of the Korean Society of Visualization
    • /
    • v.8 no.3
    • /
    • pp.56-62
    • /
    • 2010
  • The interaction patterns between shock wave and boundary layer in a rocket nozzle are mainly classified into two categories, FSS(Free Shock Separation) and RSS(Restricted Shock Separation), both of which are associated with the thrust characteristics as well as side loads of the engine. According to the previous investigations, strong side loads of the engine are produced during the period of transition from FSS to RSS or vice versa. The present work aims at investigating the unsteady behavior of the separation shock waves in a two-dimensional supersonic nozzle, using experimental method and CFD. Schlieren optical method was employed to visualize the time-mean and time-dependent shock motions in the nozzle. The unsteady, compressible N-S equations with SST K-$\omega$ turbulence closure were solved using a fully implicit finite volume scheme. The results obtained show the separation shock motions during the transition of the interaction pattern.

A STUDY ON AERODYNAMIC CHARACTERISTICS DEPENDING ON SHAPE OF AN INTERNAL MOTOR IN A SIROCCO FAN FOR RESIDENTIAL VENTILATION (주거환기용 시로코홴의 내부모터 형상에 따른 공력특성 연구)

  • Cha, K.H.;Kim, J.H.;Kim, K.Y.
    • Journal of computational fluids engineering
    • /
    • v.16 no.4
    • /
    • pp.1-6
    • /
    • 2011
  • Aerodynamic characteristics depending on the shape of an internal motor in a small-size sirocco fan for residential ventilation have been investigated. For the aerodynamic analyses of the sirocco fan, three-dimensional Reynolds-averaged Navier-Stokes equations are solved with the shear stress transport model for turbulence closure. The flow analyses are performed on hexahedral grids using a finite-volume solver. The validation of the numerical results at steady-state is performed by comparing with experimental data for the pressure and efficiency. In order to investigate the aerodynamic characteristics depending on shape of an internal motor in a sirocco fan, the reference shape is analyzed compared to the case without internal motor. Additionally, two shape parameters, height and width of the internal motor in a sirocco fan, are tested to investigate their effects on the aerodynamic characteristics. The results show that the shape of the internal motor in a sirocco fan is an important factor to improve the aerodynamic performances.

Standardization Trend and Propulsion Strategy of Wind Power Generation (풍력발전 표준화 동향 및 추진전략)

  • Kim, Mann-eung
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.475-475
    • /
    • 2009
  • Recent alarming acceleration of global warming has made power generations using renewable energy to be in the middle of the spotlight. Korean government has also announced that it will make the related industry to be nation's one of main export items with high investments to low carbon green growth industry. To achieve this goal of exporting the renewable energy power generation system beyond domestic use, internationally acceptable rules should be applied and the three step processes of design, performance assessment and certification should follow international standards. Corresponding this international requests, IEC(International Electrotechnical Commission) is conducting the establishment of rules in TC88 for technical requirements of wind turbines. Design life-time of a wind turbine is required to be at least 20 years. In the meantime, the wind turbine will experience a lot of load cases such as extreme loads and fatigue loads which will include several typhoons per year and extreme gusts with 50 years recurrence period as well as endless turbulence flow. Therefore, IEC 61400-1 specifies design load cases to be considered in the wind turbine design and requires the wind turbine to withstand the load cases in various operational situations. It thus appears that the examination of contents and decisions discussed in the international standard committee will help people in the field of offshore wind energy and ocean energy converters.

  • PDF

Investigation on the Excessive Vibration of A Mixer Facility in A Water Purification Plant (정수장용 교반기 시설의 과진동 원인 분석)

  • Park, Jin-Ho;Lee, Jeong-Han;Kim, Bong-Soo;Kang, Mun-Hu;Kim, Dong-Soo;Joo, Yoon-Sik
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.312-316
    • /
    • 2002
  • Recently, mixers are being widely used in the water purification plant in order to increase the filtration efficiency. It has been found that a severe vibration was being felt on a upper structure of a mixer facility during steady state operation. The cause of the excessive vibration of the structure to which the mixer's shaft is supported has been evaluated through modal analysis on the shaft and vibration measurements during operation. The fundamental natural frequency of the mixer's shaft is found to be around 1.8 Hz and the main vibratory frequency around 30 Hz. It has been tuned out that the main vibratory frequency, 30 Hz is coincident with the fundamental holding frequency of the upper structure, and that the acceleration signal of the upper structure and the displacement signal of the mixer's shaft showed highly coherent to each other. Accordingly, it reveals that the main cause of the excessive vibration is due not to the mixer's vibration but to the natural frequency of the upper structure excited by flow turbulence.

  • PDF