• 제목/요약/키워드: Turbopump Impeller

검색결과 37건 처리시간 0.019초

액체로켓용 터보펌프 성능예측에 대한 수치해석적 연구 (Numerical Studies on the Performance Prediction of a Turbopump System for Liquid Rocket Engines)

  • 최창호;이기수;김진한;양수석;이대성
    • 한국유체기계학회 논문집
    • /
    • 제5권2호
    • /
    • pp.15-21
    • /
    • 2002
  • The hydraulic performance analysis of an entire pump system composed of inducer, impeller, volute and seal for the application of turbopumps is numerically performed using three-dimensional Navier-Stokes equations. A quasi-steady mixing-plane method is used on the impeller/volute interface to simulate the unsteady interaction phenomena. From this work, the effects of each component on the pump performance are investigated at design and off-design conditions through the analysis of flow structures and loss mechanisms. The computational results are in a good agreement with experimental ones in terms of the headrise and efficiency even though very complex flow structures are present. It is found that the asymmetric pressure distribution along the volute wall constitutes the main reason of the difference between experimental and computational results, due to the limitation of the quasi-steady method. Since the volute was found to be over-designed by the pressure distribution of the volute wall, re-design of the volute has been performed, resulting in an improved performance characteristic.

터보펌프용 연료펌프의 평균유선 성능해석 (Meanline Performance Analysis of a Fuel Pump for a Turbopump System)

  • 윤의수;최범석;박무룡;이석호
    • 한국유체기계학회 논문집
    • /
    • 제5권1호
    • /
    • pp.33-41
    • /
    • 2002
  • Low NPSH and high pressure pumps we widely used for turbopump systems, which have an inducer and operate at high rotating speeds. In this paper, a meanline method has been established for the preliminary design and performance prediction of pumps having an inducer for cavitating or non-cavitating conditions at design or off-design points. The method was applied for the performance prediction of a fuel pump. Predicted performances by the method are shown to be in good agreement with experimental results for cavitating and non-cavitating conditions. The established meanline method can be used for the performance prediction and preliminary design of high speed pumps which have a inducer, impeller and volute.

수정된 후방 플로팅 링 실을 적용한 7톤급 터보펌프 산화제 펌프의 진동 및 압력 측정 (Measurements of Vibration and Pressure of an Oxidizer Pump for a 7-tonf Turbopump with a Modified Rear Floating Ring Seal)

  • 배준환;곽현덕;최창호;최종수
    • Tribology and Lubricants
    • /
    • 제36권5호
    • /
    • pp.253-261
    • /
    • 2020
  • In this paper, we present an experimental investigation of the frequency characteristics and a visual inspection of an oxidizer pump with a modified rear-floating ring seal for a 7-tonf turbopump. An oxidizer pump typically operates at high rotational speeds and under cryogenic conditions. Despite its low hydraulic efficiency, the floating ring seal is frequently employed as a leakage control solution for turbomachinery because it effectively reduces abrasion by friction. When the oxidizer pump starts up, the floating ring moves excursively but locks up stably against the pump casing when the contact pressure increases. The compressive force on the floating ring depends on the hydrodynamic forces induced by the flow through the floating ring. This force is controlled by the nose position of the floating ring. Based on a validation test for a 7-tonf turbopump with two types of floating rings, we concluded that the floating ring with a small diameter nose can move easily with a low contact pressure in the cooling path. This leads to instability of the pressure fluctuation around the floating ring. In contrast, a floating ring with a large diameter nose has a high contact pressure and attaches strongly to the casing, which causes wear and frictional oxidation between the contact surfaces of the impeller and the floating ring.

터보펌프 Cavitation 성능시험기 개발 및 성능시험에 관한 연구 (Development of Turbopump Cavitation Performance Test Facility and the Test of Inducer Performance)

  • 손동기;김춘택;윤민수;차봉준;김진한;양수석
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집E
    • /
    • pp.619-624
    • /
    • 2001
  • A performance test facility for turbopump inducer cavitation was developed and the inducer cavitation performance tests were performed. Major components of the performance test facility are driving unit, test section, piping, water tank, and data acquisition and control system. The maximum of testing capability of this facility are as follows: flow rate - 30kg/s; pressure - 13 bar; rotational speed 10,000rpm. This cavitation test facility is characterized by the booster pump installed at the outlet of the pump that extends the flow rate range, and by the pressure control system that makes the line pressure down to vapor pressure. The vacuum pump is used for removing the dissolved air in the water as well as the line pressure. Performance tests were carried out and preliminary data of test model inducer were obtained. The cavitation performance test and cavitation bubble flow visualization were also made. This facility is originally designed for turbopump inducer performance test and cavitation test. However it can be applied to the pump impeller performance test in the future with little modification.

  • PDF

75톤급 액체로켓 엔진용 산화제 펌프 회전체 동역학 설계 (Rotordynamic Design of a LOX Pump for a 75 Ton Class Liquid Rocket Engine)

  • 전성민;곽현덕;윤석환;김진한
    • 항공우주기술
    • /
    • 제6권2호
    • /
    • pp.205-210
    • /
    • 2007
  • 75톤급 액체 로켓 엔진용 터보펌프의 산화제펌프에 대한 로터다이나믹 설계를 수행하였다. 인듀서와 임펠러 및 베어링의 축배치는 항우연에서 개발 중인 유사한 구조를 가지는 터보펌프를 근간으로 하였고, 75톤급 산화제펌프 수력 설계에 맞추어 인류서, 임펠러의 축길이가 반영되었다. 후방 베어링으로부터 임펠러까지의 거리를 베어링 하중 설계에 대한 설계 변수로 고려하였고, 전방 베어링과 후방 베어링의 강성을 변화시키면서 회전 속도에 따른 비동기 고유진동수 해석을 수행하여 산화제 펌프의 임계속도를 고찰하였다. 베어링에 적절한 하중이 부과된다면 산화제 펌프의 임계속도는 기준속도 11,000 rpm과 비교하여 충분히 높기에, sub-critical 로터로서 기준속도 이내에서 안정적인 터보펌프의 운용이 가능하리라 판단된다.

  • PDF

터보펌프용 연료펌프의 평균유선 성능해석 (Meanline Performance Analysis of a Fuel Pump for a Turbopump System)

  • 윤의수;최범석;박무룡
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2001년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.250-257
    • /
    • 2001
  • Low NPSH and high pressure pumps are widely used for turbopump systems, which have an inducer and operate at high rotating speeds In this paper, a meanline method has been established for the preliminary design and performance prediction of pumps having an inducer for cavitating or non-cavitating conditions and at design or off-design points. The method was applied for the performance prediction of a fuel pump, which had been developed by Hyundai Mobis in collaboration with KeRC for a liquid rocket engine. The engine uses liquid methane and liquid oxygen as working fluids and rotates at 50,000 rpm KeRC carried out a model testing of the fuel pump with water as a working fluid at the reduced speed (10,000 ${\~}$ 15,000 rpm). Predicted performances by the method are shown to be in good agreement with experimental results for cavitating and non-cavitating conditions. The established meanline method can be used for the performance prediction and preliminary design of high speed pumps which have a inducer, impeller and volute.

  • PDF

J-그루브에 의한 인듀서의 캐비테이션 억제 (Suppression of Cavitation in Inducer by J-Groove)

  • 쿠로카와준이치;최영도
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2005년도 연구개발 발표회 논문집
    • /
    • pp.776-781
    • /
    • 2005
  • Cavitation is the most serious problem caused in developing high-speed turbopump, and use of an inducer is often made to avoid cavitation in main impeller. Thus, the inducer always operates under the worst condition of cavitation. If it could be possible to control and suppress cavitation in the inducer by some new device, it would also be possible to suppress cavitation occurring in all types of pumps. The purpose of our present study is to develop a new effective method of controlling and suppressing cavitation in an inducer using shallow grooves, named as "J-Groove", J-Groove is installed on the casing wall near the blade tip to use the pressure difference between high pressure region and low pressure region in the axial direction at the inlet of the inducer. The results show that proper combination of backward-swept inducer with J-Groove improves suction performance of turbopump remarkably in the range of partial flow rate as well as designed flow rate. The rotating backflow cavitation occurring in the range of low flow rate and the cavitation surge occurring in the vicinity of the best efficiency point can be almost fully suppressed by installing J-Groove.

  • PDF

J-그루브를 이용한 인듀서의 캐비테이션 억제에 관한 연구 (A Study on the Suppression of Cavitation in Inducer by J-Groove)

  • 최영도;쿠로카와준이치
    • 대한기계학회논문집B
    • /
    • 제29권11호
    • /
    • pp.1239-1247
    • /
    • 2005
  • Cavitation is the most serious problem in developing high-speed turbopump, and inducer is often used to avoid cavitation in main impeller. Thus, inducer is always operating in the worst .cavitation condition. If it is possible to control and suppress cavitation in inducer by some new device, it might be possible to suppress cavitation occurring in any type of pumps. The purpose of present study is to develop a new effective method of controlling and suppressing cavitation in inducer using shallow grooves, which is named 'J-Groove'. J-Groove is installed on the casing wall near the blade tip to use the pressure difference between high pressure region and low pressure region of the inducer in an axial direction. The results show that proper combination of backward-swept inducer with J-Groove improves suction performance of turbopump remarkably in the range of partial flow rate as well as designed flow rate. The rotating backflow cavitation occurring in the range of low flow rate and the cavitation surge occurring in the vicinity of the best efficiency point can be almost suppressed by installing J-Groove.

인듀서의 크기가 터보펌프의 흡입성능 상사에 미치는 영향에 관한 연구 (Put Effect of the inducer scale on the suction performance similarity of a turbopump)

  • 강병윤;강신형
    • 한국유체기계학회 논문집
    • /
    • 제17권4호
    • /
    • pp.47-52
    • /
    • 2014
  • An inducer is forward-attached to an impeller to improve the suction performance. This paper described the experimental and numerical investigations on the concept of NPSH similarity about the inducer scale. As Reynolds number decreased for the same scale inducer, the hydraulic performance is slightly reduced because of the viscosity. The suction performance similarity is in good agreement. For different scale inducers, the NPSH similarity did not follow the conventional rule which is proportional to the square of the inducer diameter. A cavity of two times scale inducer grows faster under cavitation inception, and the head is more drop as the fluid passes blades. Because of the simplified cavitation model and vapor pressure, the NPSH similarity dose not have an accuracy. This study suggested an empirical formula for the NPSH similarity.

액체로켓엔진 터보펌프용 펌프의 축추력 조절에 관한 연구 (Study on the Control of the Axial Thrust of a Pump for Liquid Rocket Engine Turbopumps)

  • 최창호;노준구;김대진;김진한
    • 한국유체기계학회 논문집
    • /
    • 제15권1호
    • /
    • pp.36-40
    • /
    • 2012
  • The magnitude of the axial thrust acting on pump bearings has a great influence on the operational reliability and service life of a pump for turbopumps. In the present study, radial vanes are introduced to the pump casing to control the axial thrust by changing the cavity pressure between the impeller and the casing. To investigate the effect of the vanes on the axial thrust of the pump, experimental and computational studies were performed with and without the vanes. It is shown that the vanes reduce the cavity pressure by preventing the flow from rotating with the impeller. Experimental and computational results show similar trend for the axial thrust difference between two cases with and without the vanes. The results show that the cavity vanes are very effective in controlling the magnitude of the axial thrust.