• Title/Summary/Keyword: Turbopump

Search Result 294, Processing Time 0.041 seconds

터보펌프 공급식 액체 로켓엔진의 시동 과도 해석

  • Park, Soon-Young;Nam, Chang-Ho;Moon, In-Sang;Seol, Woo-Seok
    • Aerospace Engineering and Technology
    • /
    • v.4 no.2
    • /
    • pp.142-152
    • /
    • 2005
  • There are two definite objects for developing the startup transient of liquid rocket engine. One is to achieve the repeatability of startup to ensure higher reliability, and the other is to reduce the time of the startup transient. Typically in the initial phase of engine development as we are currently opposing, it is hard to estimate engine startup time due to the lack of experiences. In this work, a startup transient analysis tool was developed with the introduction of the mathematical model for each component of pump-fed liquid rocket engine system. Startup transient was investigated for a 25 ton class gas generator cycle engine to find necessary time for reaching steady state from startup and this enabled to reveal dynamic characteristics of the engine.

  • PDF

A Methodology for Estimating Reliability and Development Cost of a New Liquid Rocket Engine -focused on Staged Combustion Cycle with LOX/LH2 (액체로켓엔진의 신뢰도 및 개발비용 추정 방법 -LOX/LH2 다단연소 사이클을 중심으로)

  • Kim, Kyungmee O.;Hwang, Junwoo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.5
    • /
    • pp.437-443
    • /
    • 2014
  • Engine is one of the most important parts in a rocket for completing its mission successfully. In this paper, we provide a methodology for estimating reliability and development cost of a liquid rocket engine newly developed. To estimate reliability, a baseline engine is selected considering factors whose effects on reliability are unquantifiable. Then reliability of a baseline engine is adjusted to reflect the effect of factors that can be modeled quantitatively. Using the previous Transcost engine cost expressed in terms of mass and the number of hot firing tests, the engine development cost is reexpressed in reliability and thrust requirements. Finally, a numerical example is given to illustrate the application of the methodology to a turbopump rocket engine using staged combustion cycle with LOX/LH2 propellant.

Optimal Design for the Rotor Overlap of a Supersonic Impulse Turbine to Improve the Performance (초음속 충동형 터빈 성능개선을 위한 동익 오버랩 최적설계)

  • Cho, Jongjae;Shin, Bong Gun;Kim, Kuisoon;Jeong, Eunhwan
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.18 no.1
    • /
    • pp.33-41
    • /
    • 2014
  • In a supersonic turbine, A rotor overlap technique reduced the chance of chocking in the rotor passage, and made the design pressure ratio satisfied. However, the technique also made additional losses, like a pumping loss, expansion loss, etc. Therefore, an approximate optimization technique was appled to find the optimal shape of overlap which maximizes the improvement of the turbine performance. The design variables were shape factors of a rotor overlap. An optimal design for rotor overlap reduces leakage mass flow rate at tip clearance by about 50% and increases about 4% of total-static efficiency compared with the base model. It was found that the most effective design variable is the tip overlap and that the hub overlap size is the lowest.

Rotordynamic design of a fuel pump and turbine for a 75 ton liquid rocket engine (75톤급 액체로켓 엔진용 연료펌프/터빈 회전체 동역학 설계)

  • Jeon, Seong-Min;Kwak, Hyun-Duck;Yoon, Suk-Hwan;Kim, Jin-Han
    • Aerospace Engineering and Technology
    • /
    • v.6 no.1
    • /
    • pp.201-208
    • /
    • 2007
  • A fuel pump and turbine rotordynamic design is performed for a 75 ton thrust liquid rocket engine. A distance from the rear bearing to the turbine was considered as a design parameter for load distribution of the bearings. Asynchronous eigenvalue analysis was performed as a function of rotating speeds, turbine mass and bearing stiffness to investigate critical speed of the fuel pump and turbine. From the numerical analysis, it is found that the effect of the front bearing stiffness is negligible in the critical speed due to the large mass moment of inertia of the turbine. With the rear bearing stiffness over $2{\times}10^{8}N/m$ and the turbine mass below 20 kg, the critical speed of the fuel pump and turbine in long shaft case is at least 70 % higher than the operating speed 11,000 rpm.

  • PDF

Conceptual Design of Electric-Pump Motor for 50kW Rocket Engine (50kW급 로켓 엔진용 전기펌프 모터의 개념 설계)

  • Kim, Hong-Kyo;Kwak, Hyun-Duck;Choi, Chang-Ho;Kim, Jeong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.2
    • /
    • pp.175-181
    • /
    • 2018
  • Electric pump system is new technology for next generation propulsion unit. The system has simple structure which dose not need gas generator, injector and turbine and might better pump for low cost and low payload rocket. Therefore, this paper suggests conceptual design of electric-pump Permanent-Magnet Synchronous Motor (PMSM) which has 50 kW & 50,000 RPM for rocket. To satisfy the system's requirement, electromagnetic analysis is conducted for suitable inner and outer diameter of stator and rotor which uses 4000 Gauss cylinder magnet and Inconel 718 can to fix whole rotor. Futhermore, to confirm rotational vibration, rotordynamics analysis is conducted. By this analysis, Campbell diagram is printed. From the diagram, natural frequency could be determined for the only motor and dynamo meter test bench.

Perspective of Technology for Liquid Rocket Engines (액체로켓엔진 기술 전망)

  • Cho, Won Kook;Ha, Sung Up;Moon, Insang;Jung, Eun Whan;Kim, Jin Han
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.8
    • /
    • pp.675-685
    • /
    • 2016
  • A research area on liquid rocket engine has been suggested. Downsizing through combustion pressure rise and low price are major issues to gas generator cycle engines. A very high pressure turbopump and material against oxidizer rich environment may be necessary technologies for staged combustion cycle engines. Integrated analysis saving computing time is the trend of rocket engine systems analysis area. Other important research topics are the methane engine for reusable booster to reduce the cost, 3D printing and materials for high temperature or oxidizer rich environment.

Combustion Performance of a Fullscale Liquid Rocket Thrust Chamber (실물형 액체로켓 연소기 지상 연소 성능 결과)

  • Seo Seong-Hyeon;Kim Jong-Gyu;Moon Il-Yoon;Han Yeoung-Min;Choi Hwan-Seok;Lee Soo-Yong;Cho Kwang-Rae
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.235-239
    • /
    • 2005
  • A 30-tonf-class fullscale thrust chamber for the application to a LEO SLV has been combustion tested over the wide ranges of a mixture ratio and a chamber pressure. The thrust chamber designed for an open cycle engine with a turbopump was tested with a ablative combustion chamber instead of a regenerative chamber to first evaluate its performance and function. The test results revealed stable combustion characteristics. The hardware survived the harsh environment and showed very sound functional characteristics. The estimated combustion efficiency of the chamber turned out to be 95% and a specific impulse at sea level was estimated as 254sec, which are comparable to or above the predicted design values.

  • PDF

Development of a Liquid Rocket Engine Fuel-Rich Gas Generator (액체로켓용 연료 과농 가스발생기 개발)

  • Seo, Seong-Hyeon;Ahn, Kyu-Bok;Lim, Byoung-Jik;Kim, Jong-Gyu;Lee, Kwang-Jin;Han, Yeoung-Min;Ryu, Chul-Sung;Kim, Hong-Jip;Choi, Hwan-Seok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.11 no.4
    • /
    • pp.38-45
    • /
    • 2007
  • A liquid rocket engine fuel-rich gas generator has been developed for the first time in the country, which can produce combustion gas over the rate of 4 kg/s at 900 K and 58 bar. The gas is not only for driving a turbopump but also for providing heat source for propellant supply tanks. The final design of the gas generator had been fixed based on the concept and preliminary development tests, and was validated through structure and heat transfer analysis. The manufacturing involved precision machining, surface finish, and special welding technique. The final assessment on the characteristics of ignition and combustion had been carried out for two different versions of injector heads. This concluded that the present product satisfies the development requirements such as spatial temperature distribution and the development has been successful.

Development of a Liquid Rocket Engine Fuel-Rich Gas Generator (액체로켓용 연료 과농 가스발생기 개발)

  • Seo, Seong-Hyeon;Ahn, Kyu-Bok;Lim, Byoung-Jik;Kim, Jong-Gyu;Lee, Kwang-Jin;Moon, Il-Yoon;Han, Yeoung-Min;Ryu, Chul-Sung;Kim, Hong-Jip;Choi, Hwan-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.181-185
    • /
    • 2006
  • A liquid rocket fuel-rich gas generator developed for the first time in the country can produce combustion gas over the rate of 4 kg/s at 900 K and 58 bar. The gas can be used not only for driving a turbopump but also for providing heat source for propellant supply tanks. The final design of the gas generator has been fixed based on the concept and preliminary development tests, and was validated through structure and heat transfer analysis. The manufacturing involves precision machining, special surface finish, and welding techniques. The final assessment on the characteristics of ignition and combustion had been carried out through five combustion tests. This concluded that the present product satisfies the development requirements.

  • PDF

Cooling of Cryogenic Liquids by Gas Helium Injection (I) (가스분사에 의한 극저온 액체의 냉각에 관한 연구 (I))

  • Song, Yi-Hwa;Choi, Young-Hwan;Kim, Yoo;Chung, Yong-Gahp;Cho, Nam-Kyung;Jeong, Sang-Kwon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.141-144
    • /
    • 2003
  • In this paper, to satisfy the temperature requirement of turbopump-inlet condition, the cooling of cryogenic propellant is performed at the simulated suction-line of the Launch Vehicle. The cooling method is by using Gas helium injection. This study investigates the effect of helium injection on the liquid nitrogen which simulates the liquid oxygen. By using helium injection, the subcooling of liquid nitrogen can be achieved within four minute when the ratio of gas volume flowrate to the volume of L$N_2$ is approximately v/v$_{L}$≒0.8min$^{-1}$ . .

  • PDF