• Title/Summary/Keyword: Turboprop Engine

Search Result 42, Processing Time 0.031 seconds

Analysis and Calibration of Propeller Power Effect for Turboprop Aircraft (터보프롭 항공기의 프로펠러 파워효과 해석 및 보정)

  • Park, Youngmin;Chung, Jindeog
    • Journal of Aerospace System Engineering
    • /
    • v.9 no.4
    • /
    • pp.62-66
    • /
    • 2015
  • During the conceptual design of turboprop aircraft, the power effect driven from rotating propeller is typically obtained from empirical data. In the present paper, propeller power effect was obtained by using unsteady three-dimensional Navier-Stokes solver with $k-{\omega}$ turbulence model for the accurate prediction of turboprop aircraft performance. In order to simulate the relative motion between propeller and fuselage, unsteady sliding mesh method was used. During simulation, three flow conditions such as climb, cruise and descending flight were selected considering the flight envelop of the real turboprop aircraft. For the correction of aerodynamic coefficients, the thrust effect of engine exhaust gas was included based on the engine manufacturer's data. Using the computational results, the correction table for the aerodynamic coefficient of turboprop aircraft was suggested for the performance analysis of turboprop aircraft.

Development of On-line Condition Monitoring Program of a Turboprop Engine (터보프롭 엔진의 온라인 상태감시 프로그램 개발에 관한 연구)

  • Kong, Chang-Duk;Kim, Keon-Woo;Lim, Se-Myung;Kim, Ji-Hyun
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.05a
    • /
    • pp.295-299
    • /
    • 2010
  • Recently, development and application of the condition monitoring and diagnostic system for improvement of durability and reliability and reduction of operating cost is generalized in the aircraft propulsion system. Especially, for reliable operation of the UAV which is flying in high altitude more than 40,000 ft for a long time an condition monitoring system to identify faults and degradations of its propulsion system should be needed. Therefore, this work proposes an on-line condition monitoring program using MATLAB/SIMULINK. In the development phase of the program, a engine signal generation module is used to simulate real engine measuring parameters instead of the real engine. The proposed on-line condition monitoring program was applied to a real turboprop engine to validate its application capability.

  • PDF

Study on Fault Diagnostics of a Turboprop Engine Using Fuzzy Logic and BBNN (퍼지와 역전파신경망 기법을 사용한 터보프롭 엔진의 진단에 관한 연구)

  • Kong, Chang-Duk;Lim, Se-Myung;Kim, Keon-Woo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.15 no.2
    • /
    • pp.1-7
    • /
    • 2011
  • The UAV(Unmanned Aerial Vehicle) which is remotely operating with long endurance in high altitude must have a very reliable propulsion system. The precise fault diagnostic system of the turboprop engine as a propulsion system of this type UAV can promote reliability and availability. This work proposes a diagnostic method which can identify the faulted components from engine measuring parameter changes using Fuzzy Logic and quantify its faults from the identified fault pattern using Neural Network Algorithms. It is found by evaluation examples that the proposed diagnostic method can detect well not only single type faults but also multiple type faults.

Study on Fault Diagnostics of a Turboprop Engine Using Fuzzy Logic and BBNN (퍼지와 역전파신경망 기법을 사용한 터보프롭 엔진의 진단에 관한 연구)

  • Kong, Chang-Duk;Lim, Se-Myung;Kim, Keon-Woo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.499-505
    • /
    • 2010
  • The UAV(Unmanned Aerial Vehicle) which is remotely operating with long endurance in high altitude must have a very reliable propulsion system. The precise fault diagnostic system of the turboprop engine as a propulsion system of this type UAV can promote reliability and availability. This work proposes a diagnostic method which can identify the faulted components from engine measuring parameter changes using Fuzzy Logic and quantify its faults from the identified fault pattern using Neural Network Algorithms. It is found by evaluation examples that the proposed diagnostic method can detect well not only single type faults but also multiple type faults.

  • PDF

Design and Test of an Assembly of Air Intake and Variable Geometry Inertial Separator for a Turboprop Aircraft (터보프롭 항공기용 흡입구 덕트 및 가변형 관성분리기 조립체 설계 및 시험)

  • Kim, Woncheol;Oh, Seonghwan;Lee, Sanghyo;Park, Jonghwa
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.9
    • /
    • pp.714-719
    • /
    • 2013
  • A turboprop aircraft for this study is required to operate at icing condition in order that it performs its given mission. So an air intake system of the turboprop aircraft should be designed and verified not only to provide the maximum possible total pressure at engine inlet at normal flight condition, but also to include an inertial separator which protects Foreign Object Debris (FOD) like ice or snow at icing condition from entering into the engine inlet screen which can cause or lead an catastrophic engine failure like engine flame-out or severe damage. So an air intake assembly incorporating a variable geometry inertial separator has been designed and then CFD/structural analysis for the assembly was performed to see its design results. Then 35% scaled model of the air intake assembly was manufactured and wind tunnel test was done. This paper describes the detailed design results for the aerodynamic design, analysis and wind tunnel testing during the development process of the air intake assembly.

Performance Analysis of Turboprop Aircraft Propulsion System by using Gasturb (Gasturb를 이용한 터보프롭 항공기 추진시스템 성능해석)

  • Choi, Won;Jeong, In-Myon;You, Jae-Ho;Kim, Ji-Hong;Lee, Il-Woo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.371-377
    • /
    • 2009
  • The propulsion system of turboprop has been rarely used in the large aircraft due to the limitation of the maximum velocity of the propeller, the power limitation by the reduction gear, etc. Recently, the demand on turboprop aircraft continues to increase because of economical efficiency and environmental factors. In this paper, turboprop propulsion system which is composed of a Pratt & Whitney 127F turboprop engine and a Hamilton Standard 568F propeller was modeled by using the Gasturb11 software. The result of the performance analysis on this propulsion system model showed that the propulsion system model was evaluated to have been successfully builded.

  • PDF

Study on Inverse Modeling of a Turboprop in High Altitude Operation using Engine Performance Data (성능데이터를 이용한 고고도운용 터보프롭엔진 역모델링 연구)

  • Kong, Chang-Duk;Lim, Se-Myeong;Kim, Ji-Hyun
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.14 no.3
    • /
    • pp.16-22
    • /
    • 2010
  • The gas turbine engine performance relies greatly on its component performance characteristics. Generally, engine manufacturers do not provide engine purchasers the component performance characteristics which can be obtained by lots of experimental tests at various operating conditions and big amount of expenses. In previous works the component maps have mostly been generated by scaling from a similar component map. However this scaling method has large error at off design points, specially in high altitude operation. Therefore this work proposes an inverse modeling method that can generate components maps of PT6A-67A turboprop engine using performance data provided by the engine manufacturer. In addition, evaluation can be made through comparison between performance analysis results using the performance simulation program including the generated compressor map and performance data.

Performance Simulation of a Turboprop Engine for Basic Trainer

  • Kong, Changduk;Ki, Jayoung;Chung, Sukchoo
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.6
    • /
    • pp.839-850
    • /
    • 2002
  • A performance simulation program for the turboprop engine (PT6A-62), which is the power plant of the first Korean indigenous basic trainer KT-1, was developed for performance prediction, development of an EHMS (Engine Health Monitoring System) and the flight simulator. Characteristics of components including compressors, turbines, power turbines and the constant speed propeller were required for the steady state and transient performance analysis with on and off design point analysis. In most cases, these were substituted for what scaled from similar engine components'characteristics with the scaling law. The developed program was evaluated with the performance data provided by the engine manufacturer and with analysis results of GASTURB program, which is well known for the performance simulation of gas turbines. Performance parameters such as mass flow rate, compressor pressure ratio, fuel flow rate, specific fuel consumption and turbine inlet temperature were discussed to evaluate validity of the developed program at various cases. The first case was the sea level static standard condition and other cases were considered with various altitudes, flight velocities and part loads with the range between idle and 105% rotational speed of the gas generator. In the transient analysis, the Continuity of Mass Flow Method was utilized under the condition that mass stored between components is ignored and the flow compatibility is satisfied, and the Modified Euler Method was used for integration of the surplus torque. The transient performance analysis for various fuel schedules was performed. When the fuel step increase was considered, the overshoot of the turbine inlet temperature occurred. However, in case of ramp increase of the fuel longer than step increase of the fuel, the overshoot of the turbine inlet temperature was effectively reduced.

A Study on GUI type On-line Condition Monitoring Program for A Turboprop Engine Using LabVIEW$^{(R)}$ (LabVIEW를 이용한 터보프롭 엔진의 GUI기반 온라인 상태감시 프로그램에 관한 연구)

  • Kong, Chang-Duk;Kim, Keon-Woo;Kim, Ji-Hyun
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.15 no.3
    • /
    • pp.86-93
    • /
    • 2011
  • Recently, development and application of condition monitoring and diagnostic system for improvement of durability and reliability and reduction of operating cost is generalized in the aircraft propulsion system. Expecially, for reliable operation of the high altitude and a long time and condition monitoring system to identify faults and degradations of its propulsion system should be needed. This work proposed a GUI-based On-line condition monitoring program using LabVIEW by PT6A-67 turboprop engine. The proposed on-line condition program can monitor the real engine performance as well as the trend through precise comparison between performance results calculated by the base performance simulation program and measuring engine performance signals. In the development phase of this monitoring system, a signal generation module is proposed to evaluate the proposed on-line monitoring system.