• Title/Summary/Keyword: Turbocharger System

Search Result 89, Processing Time 0.031 seconds

A Study on Simulation of an Water Cooling Intercooler for a Small Marine Diesel Engine (소형 선박용 디젤엔진의 수냉식 인터쿨러 해석 연구)

  • Yang, Young-Joon;Sim, Han-Sub
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.13 no.5
    • /
    • pp.43-49
    • /
    • 2014
  • This study was carried out to improve the design of an intercooler for a small marine diesel engine. Diesel engines for small marine ships have mainly been developed by changing the structure of the vehicle engine. Sea water was most commonly used in the intercooler of small marine diesel engines to cool the hot air compressed by the turbocharger. In this study, the intercooler is modeled and simulated using STAR-CCM+ in order to find optimal data for the design of an intercooler. In the results, the temperature differences between the data from a numerical analysis and experimental data were $0.38^{\circ}C$ in the hot air outlet and $3.63^{\circ}C$ in the cooling water outlet. Therefore, it was confirmed that both analysis and experimental results need to be considered when designing an intercooler. A closer degree of similarity in the two datasets can improve the confidence in the design of these intercoolers.

Construction of Response Surface Model for Compression Ignition Engine Using Stepwise Method (Stepwise 방식을 이용한 압축 착화 디젤 엔진의 반응 표면 모델 구축)

  • WAHONO, BAMBANG;PUTRASARI, YANUANDRI;LIM, OCKTAECK
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.28 no.1
    • /
    • pp.98-105
    • /
    • 2017
  • In recent years, compression ignition engine has been equipped with some control devices such as common rail injection system and turbocharger. In order to control the large number of input parameter appropriately in consideration of $NO_x$, HC and engine power as the engine output objectives. The model construction which reproduces the characteristic value of $NO_x$, HC and engine power from input parameter is needed. In this research, the stepwise method was applied to construct the compression ignition engine model. By using the preliminary experimental data of single cylinder compression ignition engine, the prediction model of $NO_x$, HC and engine power on single injection compression ignition engine was built and compared with the main experimental data.

Comparison of combustion characteristics between esterified and non-esterified bio-diesel oil on CRDI diesel engine with turbocharger (전자 제어 분사식 과급디젤기관에서 에스테르화와 비에스테르화 바이오 디젤유의 연소 특성 비교)

  • Lee, Sang Deuk;Jung, Suk Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.1
    • /
    • pp.53-58
    • /
    • 2013
  • In order to judge that non-esterified soybean oil could be used on diesel engine with electronic control of fuel injection system, The test of combustion performance using only gas oil, gas oil blended with esterified bio-diesel oil 5% and non-esterified soybean oil 5% were carried out. It is noticed that most performances of gas oil blended with esterified bio-diesel oil 5% and non-esterified 5% have similar characteristics but non-esterified bio-diesel oil 5% emitted smaller NOx, resulting from fuel NO.

Design of Hydrogen Peroxide Turbopump and Water Test (과산화수소 터보펌프 설계 및 수류시험)

  • Lee, Sung-Gu;Park, Dae-Jong;Kwon, Se-Jin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.317-320
    • /
    • 2011
  • Hydrogen peroxide turbopump was designed for bi-propellant liquid rocket engine using hydrogen peroxide and kerosene as propellants. Turbopump operation was verified through water tests. Design conditions of hydrogen peroxide turbopump were determined, and impeller was designed. Turbine which drives pump was selected from commercial turbocharger. Gas generator was designed by reference from turbine map. Pump, turbine, gas generator were integrated, and turbopump system was constructed. Turbopump supplied water by 1.47 bar of pressure and as well as 3.4 kg/s of mass flow rate.

  • PDF

A Study on the Engine Performance and Emission Characteristics in a LP EGR System with Electronic Throttle Control (ETC를 적용한 저압 EGR시스템의 엔진성능 및 배출가스 특성에 관한 연구)

  • Park, Jun-Heuk;Lim, Jong-Han;Yoon, Jun-Kyu
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.4
    • /
    • pp.379-387
    • /
    • 2011
  • Research and development of LP EGR system for the performance improvement and emission reduction on diesel engine is proceeding at a good pace. LP EGR system seems to be helpful method to further reduce$NO_x$ emissions while maintaining PM emissions at a low level because the boost pressure is unchanged while varying EGR rate. This study is experimentally conducted on a 2.0L common rail DI engine at the medium load condition (2000 rpm, BMEP 1.0 MPa, boost pressure 181.3 kPa) that difficult to use large amount of EGR gas because of deteriorations of performance and fuel consumption. And we investigated the characteristics of performance and fuel consumption while varying EGR systems. The overall results using LP EGR system equipped with ETC identified benefits on reduction of PM and improvement of fuel consumption and thermal efficiency while keep the $NO_x$ level compared to HP EGR and LP EGR with back pressure valve.

Optimization of Diesel Engine Performance with Dual Loop EGR considering Boost Pressure, Back Pressure, Start of Injection and Injection Mass (과급압력, 배압, 분사 시기 및 분사량에 따른 복합 방식 배기 재순환 시스템 적용 디젤 엔진의 최적화에 대한 연구)

  • Park, Jung-Soo;Lee, Kyo-Seung;Song, Soon-Ho;Chun, Kwang-Min
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.5
    • /
    • pp.136-144
    • /
    • 2010
  • Exhaust gas recirculation (EGR) is an emission control technology allowing significant NOx emission reduction from light-and heavy duty diesel engines. The future EGR type, dual loop EGR, combining features of high pressure loop EGR and low pressure loop EGR, was developed and optimized by using a commercial engine simulation program, GT-POWER. Some variables were selected to control dual loop EGR system such as VGT (Variable Geometry Turbocharger)performance, especially turbo speed, flap valve opening diameter at the exhaust tail pipe, and EGR valve opening diameter. Applying the dual loop EGR system in the light-duty diesel engine might cause some problems, such as decrease of engine performance and increase of brake specific fuel consumption (BSFC). So proper EGR rate (or mass flow) control would be needed because there are trade-offs of two types of the EGR (HPL and LPL) features. In this study, a diesel engine under dual loop EGR system was optimized by using design of experiment (DoE). Some dominant variables were determined which had effects on torque, BSFC, NOx, and EGR rate. As a result, optimization was performed to compensate the torque and BSFC by controlling start of injection (SOI), injection mass and EGR valves, etc.

Development of real-time monitoring system using wired and wireless networks ina full-scale ship

  • Paik, Bu-Geun;Cho, Seong-Rak;Park, Beom-Jin;Lee, Dong-Kon;Bae, Byung-Dueg
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.2 no.3
    • /
    • pp.132-138
    • /
    • 2010
  • In the present study, the real-time monitoring system is developed based on the wireless sensor network (WSN) and power line communication (PLC) employed in the 3,000-ton-class training ship. The WSN consists of sensor nodes, router, gateway and middleware. The PLC is composed of power lines, modems, Ethernet gateway and phase-coupler. The basic tests show that the ship has rather good environments for the wired and wireless communications. The developed real-time monitoring system is applied to recognize the thermal environments of main-engine room and one cabin in the ship. The main-engine room has lots of heat sources and needs careful monitoring to satisfy safe operation condition or detect any human errors beforehand. The monitoring is performed in two regions near the turbocharger and cascade tank, considered as heat sources. The cabin on the second deck is selected to monitor the thermal environments because it is close to the heat source of main engine. The monitoring results of the cabin show the thermal environment is varied by the human activity. The real-time monitoring for the thermal environment would be useful for the planning of the ventilation strategy based on the traces of the human activity against inconvenient thermal environments as well as the recognizing the temperature itself in each cabin.

Effect of EGR Rate and Injection Timing on the Characteristics of Exhaust Emissions in Light-duty Diesel Engine (Cooled EGR 시스템의 EGR률과 연료분사시기가 소형 디젤엔진의 배기 배출물 특성에 미치는 영향에 관한 연구)

  • Gong, Ho-Jeong;Hwang, In-Goo;Ko, A-Hyun;Myung, Cha-Lee;Park, Sim-Soo;Lim, Chang-Sik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.3
    • /
    • pp.7-12
    • /
    • 2012
  • Cooled EGR system is widely used to reduce NOx emissions in diesel engine. But when EGR rate was increased, combustion stability was worsened and PM level was increased. So determining optimized control point of EGR rate is important. In order to determine this point, it is important to figure out the effect of EGR system on the exhaust emissions. In this research, NOx and PM emissions were analyzed with various coolant temperature supplied to the EGR cooler at several positions such as downstream of turbocharger, upstream and downstream of DPF. Effects of some variables such as EGR rate, hot / cooled EGR and change of injection timing were estimated. And $CO_2$ emissions were measured at exhaust and intake manifold to calculate EGR rate at each engine operating condition. Also combustion analysis was performed in each engine operating conditions. In the result of this study, there was trade-off between NOx emissions and PM emissions. When EGR rate was increased, combustion pressure was decreased and COV of IMEP was increased.

Upgrade Development of a Centrifugal Compressor for Marine Engine Turbochargers (선박용 터보차져 원심압축기의 성능향상 개발)

  • Oh, Jong Sik;Oh, Koon Sup;Yoo, Kwang Taek
    • The KSFM Journal of Fluid Machinery
    • /
    • v.3 no.1 s.6
    • /
    • pp.43-50
    • /
    • 2000
  • Upgrade development of a high pressure ratio centrifugal compressor in marine engine turbochargers is presented. A new matched operating point at increased speed of rotation was determined through system cycle analysis using the exisitng test data of turbine performance. Under some severe restrictions for geometric parameters, the state-of-the-art methods of both aerodynamic design and CFD analysis were applied, in which only an impeller, a vaned diffusor and some part of casing wall were modified. Prototype hardware was fabricated and assembled for system performance tests. Excellent performance in pressure ratio and efficiency was obtained over whole speed region. Reduced surge and choke margin was, however, observed at design speed of rotation.

  • PDF

The Effect of Biodiesel Oxidation Deterioration on Emission (바이오디젤의 산화가 배출가스에 미치는 영향)

  • Song, Hoyoung;Lee, Minho;Kim, Kiho;Jung, Choongsub
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.220.2-220.2
    • /
    • 2011
  • Biodiesel and biodiesel blend fuel are receiving increasing attention as alternative fuels for diesel engines without substantial modifications. Biodiesel fuels and blending have been widely studied and applied in diesel engine because of biodiesel's lower sulfur, lower aromatic hydrocarbon and higher oxygen content. Biodiesels have the potential to be oxidized in different condition. It has reported that oxidation deterioration of biodiesel is different in the condition of storage and oxidation causes chemical property change of methyl esters. Sunlight intensity, temperature, material of container and contact surface with oxygen are key dominant factors accelerating oxidation deterioration. In this study, we chose temperature among key oxidation conditions and metal container filled with biodiesel was heated at about $110^{\circ}C$ for 10 days in order to accelerate oxidation deterioration. To better understand the effect of biodiesel blends on emission, steady state tests were conducted on a heavy duty diesel engine. The engine was fueled with Ultra Low Sulphur Diesel(ULSD), a blend of 10% and 20%(BD10, BD20) on volumetric basis, equipped with a common rail direct injection system and turbocharger, lives up to the requirements of EURO 3. The experimental results show that the blend fuel of normal biodiesel with BD10 and BD20 increased NOx. The result of PM was similar to diesel fuel on BD10, but the result of PM on BD20 was increased about 63% more than its of diesel. The blend fuel of Oxidation biodiesel with BD10 and BD20 increased NOx as the results of normal biodiesel. But PM was all increased on BD10 and BD20. Especially THC was extremely increased when test fuel contains biodiesel about 140% more than its of diesel. Through this study, we knew that oxidation deterioration of biodiesel affects emission of diesel engine.

  • PDF