• 제목/요약/키워드: Turbocharger Engine

Search Result 149, Processing Time 0.022 seconds

Parametric Study for Reducing NO and Soot Emissions in a DI Diesel Engine by Using Engine Cycle Simulation (직분식 디젤엔진에서 엔진 매개변수들이 NO 및 soot 배출에 미치는 영향에 대한 수치해석 연구)

  • 함윤영;전광민
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.5
    • /
    • pp.35-44
    • /
    • 2002
  • Engine cycle simulation using a two-zone model was performed to investigate the effect of the engine parameters on NO and soot emissions in a DI diesel engine. The present model was validated against measurements in terms of cylinder pressure, BMEP, NO emission data with a 2902cc turbocharger/intercooler DI diesel engine. Calculations were made for a wide range of the engine parameters, such as injection timing, ignition delay, Intake air pressure, inlet air temperature, compression ratio, EGR. This parametric study indicated that NO and soot emissions were effectively decreased by increasing intake air pressure, decreasing inlet air temperature and increasing compression ratio. By retarding injection timing, increasing ignition delay and applying EGR. NO emission was effectively reduced, but the soot emission was increased.

Study on Low Pressure Loop EGR System for Heavy-duty Diesel Engine to Meet EURO-5 NOx Regulation (LPL EGR System 적용 대형 디젤엔진의 EURO-5 NOx 규제대응에 관한 연구)

  • Lee, K.S.;Baek, M.Y.;Park, H.B.
    • Journal of Power System Engineering
    • /
    • v.11 no.4
    • /
    • pp.12-17
    • /
    • 2007
  • Recently, many small and medium size diesel vehicles have been equipped with turbocharger and EGR system to get high performance and reduce $NO_x$ emissions but its application to heavy-duty diesel engine is not common yet. In this work, the simulation model for EURO-3 engine was developed using WAVE and then its performance and emission level were verified by comparing with experimental results. The possibility of current EURO-3 engine equipped with LPL EGR system which would be satisfied the EURO-5 regulation are examined. ESC 13 mode was chosen as the primary engine test mode, and the injection timing and fuel quantity were changed to compensate the lost engine performance caused by EGR. The system developed in this study shows that the current EURO-3 engine could satisfy EURO-5 $NO_x$ regulation by applying LPL EGR.

  • PDF

Cooling Design and Flight Test for Airplane Reciprocating Engine (항공기 왕복엔진 냉각설계 및 인증시험)

  • Lee, Kangyi;Park, Jonghyuk;Park, Sunghwan
    • Journal of Aerospace System Engineering
    • /
    • v.6 no.2
    • /
    • pp.35-41
    • /
    • 2012
  • A reciprocating engine installed on a normal category airplane shall be effectively cooled by air flown through the engine compartment. A airplane powerplant designer has to design cooling air inlets, baffles, seals, and outlets to maintain cylinder head temperatures and oil temperature under the limits, and show compliance with appropriate airworthiness standard. In this study, cooling designs of the installed engine and compliance requirements applicable to the cooling designs were reviewed, and engine cooling flight test results were evaluated for design changes. Engine cooling certification test will be conducted in a next step.

Effects of Oil Inlet Pressure and Temperature on the Dynamic Behaviors of a Full-Floating Ring Bearing Supported Turbocharger Rotor (터보차저 공급 오일 압력과 온도가 풀-플로팅 베어링의 동적 거동에 미치는 영향)

  • Lee, In-Beom;Hong, Seong-Ki
    • The KSFM Journal of Fluid Machinery
    • /
    • v.20 no.2
    • /
    • pp.53-62
    • /
    • 2017
  • In this paper, the effect of oil conditions in rotor dynamic behaviors of a FFRB (Fully-Floating Ring Bearing) is investigated. Through the characteristic of a FFRB has two films, it has several advantages such as less friction loss and better stability over a wide speed range. However, it is difficult to supply a oil to the inner film. Thus, turbocharger makers have been paid significant attention to the lubrication of a FFRB because of its importance. This work focuses on the influence of oil inlet pressure and temperature. The methodologies of computational simulation and experimental test were used to estimate the rotor dynamic behaviors. In experimental test, the single-scroll turbocharger for the 1.4L diesel engine was used. The results show that the oil inlet pressure and temperature will place considerable influence on the rotor response. Oil conditions affect RSR (Ring Speed Ratio) which is cause of sub-synchronous vibrations, which also cause of oil whirling and whip even a critical speed. At higher speed range, the phenomenon of self-excited vibrations which is cause of instability of fluid whirl is investigated through the orbit shapes that consist of small orbit and large amplitude orbit. It is shown that some performance of a FFRB can be controlled by the conditions of oil supply. Finally, it was revealed that the oil induced operating conditions will strongly affect the turbocharger rotor dynamics behaviors.

A Study on the Volumetric Efficiency Improvement by Variable Induction & Exhaust System in a Turbocharged Diesel Engine (가변 흡.배기시스템에 의한 과급디젤기관의 체적효율 향상에 관한 연구)

  • Kang, H.Y.;Koh, D.K.
    • Journal of Power System Engineering
    • /
    • v.12 no.1
    • /
    • pp.13-19
    • /
    • 2008
  • In this study, a variable induction and exhaust system is applied to turbocharged diesel engine to improve the volumetric efficiency, especially, in a low and transient engine speed range where much of the pollutant matters are expelled out. The volumetric efficiency is known as one of the most important factor which affects significantly engine performance, fuel economy and further emission and noise level. As the torque increase with the engine speed up, the gas flow in an exhaust pipe become pulsating and then has an effect on boost up capacity of air charging into the cylinder and expelling capacity to atmosphere simultaneously. But at a low and idling speed, the pulsation effect was not so significant. Accordingly, resonator was employed to compensate their loss. The variable induction system consists of the secondary pipe, resonator, intercooler, and torque variance were examined with extended operating conditions. In the mean time, for interpretation and well understanding for the phenomena of wave action that arising during intake and exhaust process between turbocharger and variable intake system, the concept of the combined supercharging was introduced. Some of results are depicted which deal with a pressure history during valve events of induction process. Consequently, by the governing of these phase and amplitude of pulsating wave, it enables us to estimate and evaluate for the intake system performance and also, designing stage of the system layout.

  • PDF

A study on the Engine Downsizing Using Mechanical Supercharger

  • Bae Jae-Il;Bae Sin-Chul
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.12
    • /
    • pp.2321-2329
    • /
    • 2005
  • One means of fulfilling $CO_2$ emission legislation is to downsize engines by boosting their power using turbochargers or mechanical superchargers. This reduces fuel consumption by decreasing the engine displacement. When a turbocharger, which is preferable to a mechanical supercharger in terms of fuel efficiency, is used, there is insufficient availability of exhaust gas energy at low engine speeds, resulting in an unfavorable engine response. Therefore, mechanically driven superchargers have increased in popularity due to their quick response to changing speeds in the transient phase. However, since a mechanical supercharger obtains its driving power from the engine, it is difficult to decrease its fuel consumption. This remains a large negative factor for superchargers, despite their excellent dynamic performance. This study aims to develop a power control concept to improve the fuel economy of a mechanical screw supercharger, which could then be used for engine downsizing.

Performance characteristics of turbocharger of diesel engine (디젤 기관의 터보 과급 특성)

  • 이창식;이창식
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.13 no.1
    • /
    • pp.9-14
    • /
    • 1991
  • 디젤 기관의 출력 성능을 향상시키기 위하여 실린더 내로 흡입되는 공기를 적극적인 방법으로 밀도가 높은 공기로 압입시키는 과급기는 디젤기관의 종합 성능을 결정하는 중요한 인자가 되고 있다. 이와 같은 관점에서 터보 과급기의 성능을 규명하고 과급기의 특성에 관한 사항을 열역학적 해석과 압축기 및 터빈의 성능 특성을 살펴보기로 한다. 여기서는 주로 과급기의 성능 특성을 중심으로 다루기로 한다.

  • PDF

Response Characteristics of the HIL System for Passenger Diesel Engine (승용 디젤엔진 HIL 시스템의 응답 특성)

  • Chung, Jin-Eun;Roh, Ho-Jong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.11
    • /
    • pp.4745-4750
    • /
    • 2011
  • A HIL(hardware-in-the-loop) system was established and the simulation was carried out to determine whether the system operates normally. The system consists of turbocharger test bench, HIL platform with real time S/W and DAQ, and engine model using Matlab/Simulink. In the simulation the supplied fuel rate is changed step-by-step from 1.8944 kg/h to 4.7360 kg/h. The change of air-fuel ratio is analyzed and observed whether the air-fuel ratio follow the target air-fuel ratio 32. When the supplied fuel rate is changed, the air-fuel ratio is converged to the target air-fuel ratio after about 20 seconds. And the vane duty ratio of turbine and the boost pressure of compressor are also changed properly. Therefore this HIL system can be used to develop the new turbocharger and improve the performance of the modified turbocharger.

The Evaluation of Performance and Flow Characteristics on the Diffuser Geometries Variations of the Centrifugal Compressor in a Marine Engine Turbocharger (박용 터보차져의 원심압축기의 디퓨져 형상변경에 따른 성능비교 및 유동특성 평가 연구)

  • Kim, Hong-Won;Ha, Ji-Soo;Kim, Bong-Hwan
    • The KSFM Journal of Fluid Machinery
    • /
    • v.11 no.2
    • /
    • pp.55-63
    • /
    • 2008
  • An examination of the condition of the flow leaving the impeller exit kinetic energy often accounts for 30-50% of the shaft work input to the compressor stage, and for energy efficiency it is important to recover as much of this as possible. This is the function of the diffuser which follows the impeller. The purpose of this study is to investigate the sensitivity of how compressor performances changes as vaned diffuser geometry is varied. Three kinds of vaned diffusers were studied and its results were compared. First vaned diffuser type is based on NACA airfoil and second is channel diffuser and third is conformal transformation of NACA65(4A10)06 airfoil. Mean-line prediction method was applied to investigate the performance and stability for three kinds of diffusers. And CFD analyses have been done for comparison and detailed interior flow pattern study. NACA65(4A10)06 airfoil showed the widest operating range and higher pressure characteristics than the others.

Compressor BPF noise reduction for an automotive turbocharger (차량용 터보차져의 컴프레서 BPF 소음 저감)

  • Park, Ho-Il;Eom, Sang-Bong;Seo, Ju-Bong;Lee, Seung-Hyun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.04a
    • /
    • pp.851-856
    • /
    • 2012
  • Automotive turbochargers have become common in gasoline engines as well as diesel engines. They are excellent devices to effectively increase fuel efficiency and power of the engines, but they unfortunately cause several noise problems. The noises are classified into mechanical noises induced from movement of a rotating shaft and aerodynamic noises by air flow in turbochargers. The mechanical noises are whine and howling noises, and the aerodynamic noises are BPF (blade-passing frequency), pulsation, surge, some special frequency noises. These noises are bothering passengers because their levels are higher or their frequencies are clearly separated from engine or vehicle noises. The noise investigated in this paper is a BPF noise induced by compressor wheels, whose frequency is the multiplication of the number of compressor wheel blades and its rotational speed. The noise is strongly dependent upon the geometry of wheels and the number of blades. This study tried to apply a groove close to the inlet side of compressor wheels in order to reduce the BPF noise. The groove has successfully reduced the noise of narrow band frequency of a turbocharger. It shows that the groove could reduce the wide band frequency noise, the compressor BPF noise with a best shape of the groove.

  • PDF