• Title/Summary/Keyword: Turbo-shaft Engine

Search Result 55, Processing Time 0.022 seconds

Simulation and Analysis of Dynamic Characteristics of a Turbo-shaft Engine (터보 축 엔진의 동적특성 해석 및 시뮬레이션)

  • Kim, Se-Hyun;Kim, Hae-Dong;Park, Sung-Su;Yoon, Sug-Joon;Kim, Jae-Hwan
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.315-318
    • /
    • 2007
  • A dynamic simulation of a turbo-shaft engine was performed for analysis of transient-state and engine-starting characteristics using the MATLAB/SIMULINKTM. The turbo-shaft engine was modelled based on thermodynamic and rotor dynamic relations. The analysis of engine starting characteristics was performed by monitoring the rate of the pressure, temperature and mechanical torque changes along the engine stations by the torque input generated from the accessary power unit and transmitted to the power turbine. The simulation of the transient-state characteristics of the engine was performed under fuel flow rate increase from the steady-state condition. For the future study, engine control unit will be added to the basic turbo-shaft engine model to enhance capability of engine performance simulation.

  • PDF

Study on Installed Performance of Turbo Shaft Engine (PW206C) for the Smart UAV (스마트 무인기용 터보축 엔진(PW206C)의 장착성능에 관한 연구)

  • Kong Chang-Duk;Owino George Omollo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.222-226
    • /
    • 2006
  • The purpose of this study is to analyze both the design and off design performance simulation of the PW206C turbo shaft engine used in the development of the smart UAV (Unmanned Ariel Vehicle) by KARI(Korean Aerospace Research Institute). Its mainly aims to investigate performance behavior at the un-installed and installed conditions. The ways employed to be able to analyze the performance extensively were mainly carried out by comparison of performance simulation results from both the commercial program 'GASTURB 9' using compressor maps generated by Genetic algorithms (GAs) or Scaling Method, and the engine manufacturer's program 'EEPP'. Off-design performance analysis was performed through matching of both mass flow and work between engine components. The set of performance simulations of the developed analytical models was performed by a commercial program package (GASTURB 9) that provides great flexibility in the choice of independent variables of the overall system. The results from the simulations are used to compare turbo shaft engine (PW206C) performance data obtained by the EEPP. At un-installed condition, it was found that the results with the compressor map generated by GAs were relatively agreed well than those with the compressor map generated by the Scaling Method. The performance calculation results using the compressor map generated by GAs were compared at un-installed condition and installed conditions with ECS-off and ECS-Max in variation of altitude, gas generator speed and flight speed.

  • PDF

Performance Analysis and Preliminary Design for the Turbo-Shaft Engine of the Multi-Purpose Helicopter (다목적 쌍발 헬리콥터용 터보축 엔진의 성능해석 및 기본설계)

  • Seo, Jeong-Won;Yun, Geon-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.1
    • /
    • pp.55-65
    • /
    • 2002
  • In this study, the procedures for the preliminary design of the turbo-shaft engine for the light multi-purpose helicopter are established. The engine specifications are determined through the performance analysis on the on-design and off-design conditions by the use of simulation program. In addition, the effect of humidity on the engine performance is examined by considering the change of the gas properties and characteristic maps due to moisture contents. The calculation results show that the engine power is reduced by the existence of moisture in working fluid.

Development of the Micro Gas Turbine Engine (마이크로 가스터빈 엔진 개발)

  • Kim, Seung-Woo;Kwon, Gii-Hun;Jang, Il-Hyeong
    • 유체기계공업학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.361-366
    • /
    • 2001
  • A mim turbo-shaft engine of 50HP for UAV, which can be easily modified to turbo-prop and turbo-jet engine by sharing the core engine and has many applications to civilian demands and munitions, will be developed This kind of micro gas turbine engine has been developed mostly by the corporations which have special technology but are small in its scale. Especially, the gas turbine engine can be easily applied to other fields and developed by domestic technology, so that the sharing of technology is planed to realize through the cooperations with academies and research institutes. In this paper, the gas turbine engine, which has the compressor ratio of 3.8, the turbine inlet temperature of l180K and the engine speed higher than 100,000 rpm, is composed of centrifugal compressor, combustor, gas generator turbine, free power turbine and gear box. The competitiveness of the gas turbine engine can be obtained from minimizing its cost by the utilization of domestic infrastructure for the performance test and the decisive outsourcing.

  • PDF

Design of an Altitude Test Facility for Turbo Shaft Engine

  • Choi, Young-Hwan;Park, Sang-Joon;Lee, Joon-Won;Kim, Chun-Taek;Cha, Bong-Jun;Ahn, Iee-Ki
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.173-181
    • /
    • 2008
  • Gas turbine engine for aircraft are usually operated at the altitude condition which is quite different from the ground condition. In order to measure the precise performance data at the altitude condition, the engine should be tested at the altitude condition by a real flight test or an altitude simulation test with an altitude test facility. In this paper describes the design of altitude test facility for turbo shaft engine. This facility will be located in test cell #2 at the Korea Aerospace Research Institute. Test Cell #2 will be used for altitude testing engines with mass flow rate up to 40kg/s and inlet temperatures in the range from $-65^{\circ}C$ to $200^{\circ}C$. The existing compressor/exhauster station with heater & cooler system will be used to simulate altitude conditions in Test Cell #2.

  • PDF

Design of Two Stage Axial Compressor of a Turbo Shaft Engine for Helicopters (헬리콥터용 터보샤프트엔진 2단 축류압축기 개량설계)

  • Kim, Jin-Han;Kim, Chun-Taek;Lee, Dae-Sung
    • 유체기계공업학회:학술대회논문집
    • /
    • 1998.12a
    • /
    • pp.183-190
    • /
    • 1998
  • This paper introduces the part of efforts to develop a derivative type turbo-shaft engine from an existing baseline engine for multi-purpose helicopters targeting at 4000kg of take-off weight for 10-12 passengers. As a first step in meeting the development goal of increasing the output power to 840hp from 720hp with minimum modification, two stage axial compressor was redesigned to obtain the higher pressure ratio by removing the inlet guide vane and increasing the chord length. As a result, two stage axial compressors were designed to have the flow rate of 3.04 kg/s, the pressure ratio of 2.01 and the adiabatic efficiency of $85\%$. Its performance tests were carried out and verification of test results and redesign are under progress. Aerodynamic and structural analyses of the preliminary design are mainly described in this paper.

  • PDF

Installed Performance Analysis of a Turboshaft Engine Considering Inlet and Exhaust Losses Estimated by Cfd Technique (CFD 기법에 의해 예측된 흡입구 및 배기구 손실을 고려한 터보축 엔진의 장착성능에 관한연구)

  • Kong Chang-Duk;Owino George Omollo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.106-109
    • /
    • 2006
  • The purpose of this study is to analyze the installed performance of the PW206C turbo shaft engine used in the development of the smart UAV(Unmanned Ariel Vehicle) by KARI(Korean Aerospace Research Institute). It mainly aims to investigate performance behavior at installed conditions using both inlet and exhaust losses generated by CFD analysis of the ducts. The ways employed to be able to analyze the performance extensively were mainly rallied out by performing design point analysis of the engine where the performance simulation results from the commercial program 'GASTURB 9' used for simulation were used as inlet boundary condition for the ducts in CFD program The use of CFD tool involve modeling of the ducts to conform with the stipulated shape and sizes as defined by KARI with a grid density that allows reasonable flow characteristics applicable to aircraft components. Respective values of Shaft horse power obtained by varying flight Mach number, Gas generator RPM and Altitude considering several losses inclusive of those estimated by use of CFD tool were then plotted at three conditions with the ECS-OFF, ECS-MAX and at un-installed condition. Reasonable results were obtained as a result of using computational fluid dynamics that can hence be justified as an alternative tool for use in future flow analysis of engine and components.

  • PDF

A Study on Power loading Experiment & Performance Analysis for Dynamic Transient Effect of a Turbo-shaft Engine with Free Power Turbine (분리 축 가스 터빈 엔진의 동역학적 천이 효과를 고려한 성능 해석 및 부하 인가 시험에 관한 연구)

  • Kim Gyoung-du;Yang Soo-seok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.8 no.3
    • /
    • pp.17-26
    • /
    • 2004
  • In this paper, power transmission systems converts the shaft power of a Turbo-shaft Engine with Free Power Turbine into the generator power and be composed of a method being supplied in the thrust motor driving a propellers. Being used this, Gas turbine engine works to flat rating about 110 kw (147 shp) that the thrust motor be extremely supplied from the engine of 317shp. In this test equipment, the engine is installed with the flywheel being able to the damping function when happen to the varying load between gas turbine engine output-shaft and generator. Then if the flywheel of inertial moment be not considered, the generator and motor not get the required power from the engine for raising the load. Also it is certified that the engine works the abnormal operation. Hence the flywheel of inertial moment is determined the required range to do the performance analysis with the dynamic transient from the given and tested engine data. This system is able to get the required power after a mounting test with the redesigned flywheel.

Development of Test Stand for Altitude Engine Test of Reciprocating Engine (왕복동 엔진의 고도성능시험을 위한 시험장치 개발)

  • Lee, KyungJae;Yang, InYoung;Kim, ChunTaek;Kim, DongSik;Baek, Cheulwoo;Yang, GyaeByung
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.563-571
    • /
    • 2017
  • Test stand for altitude engine test of reciprocating engine was designed, manufactured and validated by preliminary test and simple calculation. These test stand designed to interface with Altitude turbo-shaft engine test facility of Korea Aerospace Research Institute. Many limiting condition for altitude test of reciprocating engine are assumed and test stand was developed to satisfy those limits. Test stand design specially focused on a altitude, Mach number and fuel temperature control for reciprocating engine altitude test with smaller air and fuel flow than turbo-shaft engine.

  • PDF

Aero Engine in the New Century -Challenge in Technology and Business-

  • Sekido, Toshinori
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.440-448
    • /
    • 2004
  • Toasting the 100 year anniversary of controlled, powered flight, the propulsion system used on today's aircraft represents the evolution of jet propulsion based on the gas turbine, first conceived by Whittle and Von Ohain about 70 years ago. In that period, propulsion system concepts have evolved through turbo-props, turbo-jets, low by-pass ratio(BPR) turbofans to today's high BPR 2-shaft and 3-shaft turbofans. Also, this period has seen remarkable progress in the performance, reliability environmental compatibility of these propulsion systems.(omitted)

  • PDF