• 제목/요약/키워드: Turbo engine

검색결과 269건 처리시간 0.023초

액체 추진 로켓 터보 펌프용 플로팅 링 실에 대한 해석 및 실험 결과의 비교 연구 (Comparison of Theoretical Analysis with Test Results of Floating Ring Seals for the LRE Turbo Pump)

  • 이용복;안경민;김창호;하태웅
    • 한국유체기계학회 논문집
    • /
    • 제7권6호
    • /
    • pp.21-27
    • /
    • 2004
  • The floating ring seal has an advantage to find the optimum position by itself, which is used in the turbo pump of a liquid rocket. The main purpose of seals is to reduce the leakage. Especially, seals of the turbo pump for the liquid rocket engine are operated under the serious conditions such as high pressure above 10 MPa, very low temperature about $-180^{\circ}C$ and high rotating speed above 25,000 rpm. So, rotordynamic stability is very important for the system stability. In this paper, the leakage and dynamic characteristics of floating ring seals were investigated by a experimental and analytical method. The theoretical results of the leakage performance for the floating ring seal showed much higher than that of experimental results. On the other hand, the results of stiffness and damping characteristics showed similarity each other. As the shaft speed was increasing, the whirl frequency ratio was increased in the experimental results.

다단연소 사이클 엔진 재점화 시험 시 밸브 작동순서에 따른 퍼지가스 유입에 대한 연구 (A Study on Purge Gas Inflow according to Valve Operation Sequence during Staged Combustion Cycle Engine Reignition Test)

  • 황창환;이정호;김채형;전준수;박재영;이광진;조남경;김승한;한영민
    • 한국추진공학회지
    • /
    • 제26권4호
    • /
    • pp.64-71
    • /
    • 2022
  • 개량된 성능의 상단엔진 개발을 위해 다단연소 사이클 액체로켓엔진의 연구가 진행 중이다. 재점화 기술을 개발하기 위한 수류시험, 점화시험, 연소시험을 계획하여 수행하였다. 재점화 시 터보펌프에서 캐비테이션 현상을 발생시킬 수 있는 연료라인으로의 퍼지가스 유입문제를 해결하기 위해, 각 단계의 시험결과를 분석하였다. 분석결과를 바탕으로 기포제거 밸브의 작동, 퍼지밸브와 엔진 연료밸브의 열림 중첩시간 줄임을 통해 퍼지가스 유입문제를 해결하였다. 이를 바탕으로 재점화 연소시험을 성공적으로 수행하였다.

스마트 무인기용 터보축 엔진의 성능진단을 위한 결함 예측에 관한 연구 (A Study on Defect Diagnostics for Health Monitoring of a Turbo-Shaft Engine for SUAV)

  • 박준철;노태성;최동환
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2005년도 제24회 춘계학술대회논문집
    • /
    • pp.248-251
    • /
    • 2005
  • 본 연구에서는 가스 터빈 엔진의 결함에 의해 나타나는 엔진의 성능 저하를 진단하는 기법을 연구하였다. 대상 엔진을 모델화하기 위해 상용 프로그램 GSP를 이용하여 저하된 성능 진단을 위한 변수들을 추출하였으며 이를 바탕으로 Health Monitoring을 위한 Virtual Sensor Model을 구축하였다. 단일 결함과 복합 결함을 예측하기 위한 방법으로 Multiple Linear Regression기법과 가중치를 이용한 기법을 도입하여 엔진 구성품의 결함 위치 및 결함 정도를 예측하였다.

  • PDF

소형디젤엔진의 배기가스 재순환용 전자식 밸브의 특성해석 및 차량적용 평가 (Evaluation of E-EGR Valve for Light Duty Diesel Vehicle)

  • 송창훈;이진욱;정용일;양갑진;이창훈;이현우;차경옥
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2001년도 제23회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.185-192
    • /
    • 2001
  • In this study the characteristics of E-EGR valve developed by UNICK were analyzed and the feasibility of application to vehicles were evaluated. Smart car(3L/100km, cdi version) and engine which is small-displacement size, 0.8-liter, of diesel passenger car developed from Mercedes-Benz were used for this experiment. It was installed a 3-cylinder turbo-charged light duty diesel engine with an electronic EGR valve. After the analysis and comparison of E-EGR valve performance under test benchs, the estimation of vehicle application was executed through the EGR map and CVS-75 test result measured on the chassis dynamometer.

  • PDF

항공기 시스템의 안전성 평가에 관한 연구 (A Study on the System Safety Assessment of Aircraft)

  • 이경철;이종희;이백준;유승우
    • 한국신뢰성학회지:신뢰성응용연구
    • /
    • 제7권2호
    • /
    • pp.89-100
    • /
    • 2007
  • For the certification of aircraft and part, it must be show the compliance with applicable requirements through system safety assessment. The safety assessment process should be planned and managed to provide the necessary assurance that all relevant failure conditions have been identified and that all significant combinations of failures which could cause those failure conditions have been considered. Complex systems, especially aircraft, should take into account any additional complexities and interdependencies which arise due to integration. In all cases involving integrated systems, the safety assessment process is of fundamental importance in establishing appropriate safety objectives for the system and determining that the implementation satisfies these objectives. This study review the safety assessment for the certification process of the aircraft engine system and analyze turbo-fan engine by fault analysis method for compliance with airworthiness requirement of aircraft engine system.

  • PDF

A Study on the Circumferential Groove Effects on the Minimum Oil Film Thickness in Engine Bearings

  • Cho, Myung-Rae;Shin, Hung-Ju;Han, Dong-Chul
    • Journal of Mechanical Science and Technology
    • /
    • 제14권7호
    • /
    • pp.737-743
    • /
    • 2000
  • This paper presents the effects of circumferential groove on the minimum oil film thickness in engine bearings. The fluid film pressures are calculated by using the infinitely short bearing theory for the convenience of analysis. Journal locus analysis is performed by using the mobility method. A comparison of minimum oil film thickness of grooved and ungrooved bearing is presented. It is found that circumferential $360^{\circ}$ groove only reduces the absolute magnitude of the oil film thickness, but $180^{\circ}$ half groove affects the shape of film thickness curve and position of minimum oil film thickness.

  • PDF

74 KW급 터보축 싸이클 산업용 가스터빈 엔진의 성능 예측 (Performance Analysis of an 74Kw Industrial Turbo-Shaft Gas Thrbine Engine)

  • 김수용;윤의수;조수용;오군섭
    • 연구논문집
    • /
    • 통권26호
    • /
    • pp.43-50
    • /
    • 1996
  • Present paper describes on/off design performance analysis of an 74KW industrial turboshaft gasturbine engine. Procedures to match between the compressor, combustor and turbine have been incorporated into the developed program satisfying compatibility requirement of flow and work and ratational speed. The validity of the performance results from the developed program are yet to be proved through performance experiments of the resultant engine, but comparison of the present results with those from "GASCAN(Thermoflow:America) under similar mass inlet flow, pressure ratio, and speed condition show good agreement despite present results underpredict 6-10% for power and up to 3% in efficiency, respectively.

  • PDF

터보과급 가솔린기관의 열전달에 관한 연구 (A study on the heat transfer of the turbocharged gasoline engine)

  • 최영돈;홍진관
    • 오토저널
    • /
    • 제10권5호
    • /
    • pp.69-82
    • /
    • 1988
  • Heat transfer experiment is carried out during the performance test of the 4-cylinder 4-stroke cycle turbo-charged gasoline engine. Cycle simulation employing the measured pressure in cylinder, the cooling water temperature and flow rate and others is carried out in order to calculate the gas temperature in cylinder. In this simulation combustion process was simulated by Annand's two zone model and suction, compression, and other processes are calculated completely. From this simulation, we can obtain not only the heat transfer coefficient but also the flame speed, turbulent burning velocity, flame factor and the boiling condition of cooling passage. The results are investigated with engine speed, equivalence ratio and spark advance.

  • PDF

대형디젤기관에 있어서 연속재생방식 매연저감장치 성능 테스트 (The Performance Test on A Continuous Regeneration DPF in A HD Diesel Engine)

  • 백두성
    • 한국산학기술학회논문지
    • /
    • 제7권5호
    • /
    • pp.788-792
    • /
    • 2006
  • 본 논문은 터보가 장착된 8000cc 대형디젤엔진에 연속재생장식 매연저감장치를 장착함으로써 기관성능과 배기가스에 대한 영향을 알아보기 위하여 수행되었으며, 실험 조건은 황 함량이 430ppm 인 표준 디젤 연료와 황 함량이 50ppm인 저유황 연료의 조건 하에서 이루어졌다. CO, HC, NOx 및 PM은 D-13 모드에서 수행되었고 매연은 D-3 모드를 기준으로 배기가스 실험이 진행되었다.

  • PDF

바이오알코올 혼합연료의 엔진오일 희석특성에 대한 실험적 연구 (An Experimental Study on Characteristics of Engine Oil Diluted by a Bio-Alcohol Mixture Fuel)

  • 김현준;이호길;오세두;김신
    • Tribology and Lubricants
    • /
    • 제32권6호
    • /
    • pp.183-188
    • /
    • 2016
  • Engine oil plays an important role in the mechanical lubrication and cooling of a vehicle engine. Recently, engine development has focused on the adoption of gasoline direct injection (GDI) and turbocharging methodology to achieve high-power and high-speed performance. However, oil dilution is a problem for GDI engines. Oil dilution occurs owing to high-pressure fuel injection into the combustion chamber when the engine is cold. The chemical components of engine oil are currently developed to accommodate gasoline fuel; however, bio-alcohol mixtures have become a recent trend in fuel development. Bio-alcohol fuels are alternatives to fossil fuels that can reduce vehicle emissions levels and greenhouse gas pollution. Therefore, the chemical components of engine oil should be improved to accommodate bio-alcohol fuels. This study employs a 2.0 L turbo-gas direct injection (T-GDI) engine in an experiment that dilutes oil with fuel. The experiment utilizes a variety of fuels, including sub-octane gasoline fuel (E0) and a bio-alcohol fuel mixture (Ethanol E3~E7). The results show that the lowest amount of oil dilution occurs when using E3 fuel. Analyzing the diluted engine oil by measuring density and moisture with respect to kinematic viscosity shows that the lowest values of these parameters occur when testing E3 fuel. The reason is confirmed to influence the vapor pressure of the low concentration bio-alcohol-fuel mixture.