• Title/Summary/Keyword: Turbo Steam Compressor

Search Result 5, Processing Time 0.018 seconds

Development of Turbo Steam Compressors for MVR System (MVR 담수화장비용 터보 증기압축기의 개발)

  • Oh, Jong-Sik;Sung, Beong-Il;Hyun, Yong-Ik
    • 유체기계공업학회:학술대회논문집
    • /
    • 2003.12a
    • /
    • pp.482-486
    • /
    • 2003
  • A high-efficiency turbo steam compressor has been successfully developed for the MVR desalination system, first one in Korea. The state-of-the-art design methods using real gas properties were applied to get all the aerodynamic design results. Bull and pinion gear trains, tilting-pad bearings and investment cast impellers were developed also to be integrated into the integral gear-driven turbo steam compressor. System tests show highly efficient performance.

  • PDF

Analysis of a small steam injected gas turbine system with heat recovery (열회수를 고려한 소형 증기분사 가스터빈 시스템 해석)

  • Kim, Dong-Seop;Jo, Mun-Gi;Go, Sang-Geun;No, Seung-Tak
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.8
    • /
    • pp.996-1008
    • /
    • 1997
  • This paper describes a methodology and results for the analysis of a small steam injected gas turbine cogeneration system. A performance analysis program for the gas turbine engine is utilized with modifications required for the model of steam injection and the heat recovery steam generator (HRSG). The object of simulation is a simple cycle gas turbine engine under development which adopts a centrifugal compressor. The analysis is based on the off-design operation of the gas turbine and the compressor performance map is utilized. Analyses are carried out with the injection ratio as the main parameter. The effect of steam injection on the power and efficiency of gas turbine and cogeneration capacity is investigated. Also presented is the variation in the main operating parameters inside the HRSG. Remarkable reduction in NOx generation by steam injection is confirmed. In addition, it is observed that for the 100% power operation the temperature of the cooled first nozzle blade decreases by 100.deg. C at full steam injection, which seems to have a favorable effect on the engine life time.

Importance Of Tribology in Positive-Displacement Type of Fluid Machinery and Heat Engine

  • Nakahara, Tsunamitsu
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1998.10a
    • /
    • pp.3-8
    • /
    • 1998
  • The industrial revolution in England was based on the manufacturing systems by the power of water mill and rapidly progressed by the innovation of steam engine. It is no exaggeration to say that today's civilization is realized by the development of various types of power machinery, namely fluid machinery and heat engine. The electric energy is converted mainly from thermal energy (mainly steam) of mineral oil, coal and nuclear fuel through generator connected with steam turbine which is a kind of power machinery. There are various types of power machinery as shown in Tables 1a and 1b. They are classified into two types by use. One is absorption type of fluid and/or thermal energy, for examples, windmill and heat engine. The other is provision type of the energies for examples, pump, compressor and propulsion. By flow type, they are also classified by two types, turbo type and positive-displacement type. The turbo type began from water mill and windmill and evolve to steam turbine and finally to gas turbine. The positive-displacement type started from reciprocating water pump and developed into steam engine and changed to reciprocating combustion engine. The pumps and motors used in oil hydraulic system for power control are also positive-displacement type.

  • PDF

Spray Visualization of the Gas Turbine Vaporizer (가스터빈 기화기의 분무 가시화 연구)

  • Jo, Sungpil;Joo, Milee;Choi, Seongman;Rhee, Dongho
    • Journal of ILASS-Korea
    • /
    • v.24 no.3
    • /
    • pp.130-136
    • /
    • 2019
  • Spray visualization of a vaporizer fuel injection system of a micro turbo jet engine was experimentally studied. The fuel heating by combustion was simulated by the high pressure steam generator and combustor inlet air from the centrifugal compressor was simulated by compressed air stored in the high pressure air tank. Spray visualization was performed with single vaporizer, and then six vaporizers which are same number of micro turbojet engine were used. As a results, the spray characteristics of the vaporizer were understood with pressure difference of the combustor inlet air and the fuel supply pressure. Spray angles with three types of vaporizer configuration were measured. In the results, guide vane configuration has a wider spray angle than the straight tube and smooth curve tube with a swirler, so it is expected that the fuel will be effectively distributed inside the combustor flame tube.

Performance Analysis of an Inert Gas Generator for Fire Extinguishing

  • Kim, Su-Yong;Arkadiy F. Slitenko
    • 연구논문집
    • /
    • s.29
    • /
    • pp.5-15
    • /
    • 1999
  • Present study deals with performance analysis of an inert gas generator (IGG) which is to be used as an effective mean to suppress the fire. The IGG uses a turbo jet cycle gas turbine engine to generate inert gas for fire extinguishing. It is generally known that a lesser degree of oxygen content in the product of combustion will increase the effectiveness of fire suppressing. An inert gas generator system with water injection will bring advantages of suffocating and cooling effects which are considered as vital factors for fire extinguishing. As the inert gas is injected to the burning site, it lowers the oxygen content of the air surrounding the flame as well as reduces the temperature around the fire as the vapour in the inert gas evaporates during the time of spreading. Some important aspects of influencing parameters, such as, air excess coefficient. $\alpha$, compressor pressure ratio, $ pi_c$, air temperature before combustion chamber, $T_2$, gas temperature after combustion chamber, $T_3$, mass flow rate of water injection, $M_w$, etc., on the performance of IGG system are investigated. Calculations of total amount of water needed to reduce the turbine exit temperature to pre-set nozzle exit temperature employing a heat exchanger were made to compare the economics of the system. A heat exchanger with two step cooling by water and steam is considered to be better than water cooling only. Computer programs were developed to perform the cycle analysis of the IGG system and heat exchanger considered in the present study.

  • PDF