• Title/Summary/Keyword: Turbo Spin Echo

Search Result 43, Processing Time 0.025 seconds

The Comparative Study on the Optimized Images between Spin Echo and Turbo Spin Echo Pulse Sequences in the 1.0 T ; Aspect of T1 Weighted Image in the Brain (SE와 TSE기법의 최적영상에 관한 고찰 (Brain T1WI 측면에서))

  • Cho M.J.;Jeong H.J.;Yoo B.K.;Kim W.S.;Min K.H.;Kim S.R.;Song I.C.
    • Journal of The Korean Radiological Technologist Association
    • /
    • v.27 no.2
    • /
    • pp.95-103
    • /
    • 2001
  • Ⅰ. Purpose : The purpose of this study was to evaluate optimized images of Turbo Spin Echo(TSE) imaging technique in Brain MRI compared with Spin Echo(SE) technique. Ⅱ. Materials and Methods : A retrospective comparison between SE and TSE sequences was pe

  • PDF

The Utility of Single Shot Turbo Spin Echo Technique for Temporal Bone Diffusion Weighted Imaging (관자뼈의 확산강조영상검사 시 Single Shot Turbo Spin Echo 기법의 유용성)

  • Choi, Kwan-Woo
    • Journal of radiological science and technology
    • /
    • v.44 no.1
    • /
    • pp.25-30
    • /
    • 2021
  • The purpose was to reduce the distortion of the image that occurs in the temporal bone area due to the very strong differences in susceptibility. A new SS-TSE technique was applied when examining the diffusion-weighted image of the temporal bone, where the auditory and facial nerves to be imaged were very thin and were adjacent to the cranial base including bone and air. This study was conducted from March 2020 to August of the same year, targeting 32 subjects who underwent the diffusion-weighted imaging of the temporal bone. To compare the distortion, existing SS-EPI technique and the new SS-TSE technique were both applied on the temporal bone area. As a result of the study, applying the new SS-TSE technique appeared to lower the distortion of images by 87.44, 46.13 and 42.35 % on the b-value 0, 800 and the ADC images, respectively. In conclusion, when using the new SS-TSE technique on the temporal bone DWI, distortion can be reduced, and thus images with high diagnostic value can be obtained.

Comparative Study applied of Spin Echo, Turbo Spin Echo and Turbo Gradient Spin Echo in Abnormal Brain (뇌손상 환자에서 SE, TSE, TGSE의 적용에 대한 비교 연구)

  • Goo Eun Hoe;Bang Yong Sik;Shin Yong Hwan;Kim Hak Moon;Kim Seong Ryong;Kim Dong Sung;Lee Yong Woo
    • Journal of The Korean Radiological Technologist Association
    • /
    • v.27 no.2
    • /
    • pp.86-94
    • /
    • 2001
  • I. Purpose : There are many kinds of MRI techniques and there have been new techniques spreading clinically with the development of software. Clinical diagnosis value has been comparatively studied by conducting the techniques of SE, TSE, and TGSE on the

  • PDF

The Comparison between Single Shot Turbo Spin Echo and B-FFE (Balanced Turbo Field-echo) in the Differentiation of Focal Liver Lesions (국소 간병변 감별에서 단발고속스핀에코 기법과 균형항정상 태세차를 이용한 고속영역 기법간의 비교)

  • Kim, Young-Chul;Kim, Myeong-Jin;Cha, Seung-Whan;Chung, Yong-Eun;Han, Kwang-Hyup;Choi, Jin-Sub
    • Investigative Magnetic Resonance Imaging
    • /
    • v.11 no.1
    • /
    • pp.39-48
    • /
    • 2007
  • Purpose : To determine the diagnostic accuracy of four different sequences : moderately T2 weighted, two heavily T2-weighted single shot turbo spin-echo sequence and breath-hold axial-2D balanced turbo field-echo sequence(bFFE) for characterization of focal lesions. Materials and Methods : During the 3-month period between June and August 2005, seventy-six patients were proved to have ninety-three focal hepatic lesions on MR imaging. The patients consisted of 49 men and 27 women (age range, 15-75 years; mean age, 56.23 years). All MR images were acquired on a 1.5-T MR using the following sequences: 1. A breath-hold axial T2-weighted single shot turbo spin-echo sequence, 2. a breath-hold axial-2D balanced turbo field-echo sequence. Two radiologists performed quantitative analysis. Another radiologist measured the lesion-to-liver contrast-to-noise ratio at the region-of-interest in the four sequences. Results : There was no significant difference in inter-observer variability between the four sequences. The accuracy for both cyst and malignancy of moderate T2 weighted MRI (echo time: 80 msec) was also highest. There was significant difference for lesion characterization between moderate T2 weighted MRI and balanced steady state procession (p-value: 0.004) in the second reader. For longer echo time, the CNR of cystic lesions were markedly increased in comparison to lesions of other component. Conclusion : The accuracy and inter-observer variability of single shot turbo spin echo T2 weighted sequence was higher than bFFE. Although there was no statically significant difference, moderate T2 weighted MRI (echo time: 80 msec) was more accurate than heavily T2 weighted sequence (echo time: 300 msec). If the results for lesion characterization is equivocal in TE 80, the addition of heavily T2 weighted MRI (echo time: 180 msec) can be helpful.

  • PDF

The Study on Reduction of Image Distortion by using Single-Shot Turbo Spin Echo in Brain Stem Diffusion MRI (자기공명 확산강조영상검사 시 영상왜곡 감소에 관한 연구)

  • Choi, Kwan-Woo;Lee, Ho-Beom;Na, Sa-Ra;Yoo, Beong-Gyu;Son, Soon-Yong
    • Journal of the Korean Society of Radiology
    • /
    • v.10 no.4
    • /
    • pp.279-284
    • /
    • 2016
  • Single-shot echo planar imaging(SS-EPI) is well established as high sensitivity for ischemic stroke. However, it is prone to susceptibility artifact in brain stem that diminish the image quality. single-shot turbo spin echo(SS-TSE) is a new DWI technique that can reduce susceptibility artifact. Thus, this research was conducted so as to reduce geometric distortion in brain stem by using single-shot turbo spin echo technique. Thirty patients without brain disease underwent diffusion MR on a 3T scanner with SS-EPI and SS-TSE. Obtained images with both sequences were analyzed for geometric distortion and error percentage as well. Image quality in terms of geometric distortion of SS-TSE were found to be significantly better than those for SS-EPI. And error percentage was considerably reduced for 2.4% of b0 image(from 11.1% to 8.7%), 1.2% of b1000 image(from 11.4% to 10.1%), respectively. In summary, diffusion MR using SS-TSE significantly reduce geometric distortion compared to SS-EPI in brain stem and may provide improved diagnostic performance.

Usefulness of Superparamagnetic Iron Oxide (SPIO) as a Negative Oral Contrast Agent in MR Cholangiopancreatography (자기공명 담관췌장초영술에서 음성 경구 조영제로 사용한 초상자성 산화철 제재의 유용성)

  • 이정민;송원규;이종덕
    • Investigative Magnetic Resonance Imaging
    • /
    • v.5 no.1
    • /
    • pp.49-56
    • /
    • 2001
  • Purpose : To evaluate value of superparamagnetic iron oxide (SPIO) as a negative oral contrast agent in MR cholangiopancreatography (MRCP). Materials and methods : Forty-eight patients with suspected biliary tract or pancreatic diseases and six healthy volunteers were enrolled in this study. All MR images were obtained using a 1.5 T MR unit. MR-CP using fat-suppressed half-Fourier acquisition single-shot turbo spin echo (HASTE) and turbo spin echo (TSE) techniques were performed and reconstructed with maximal intensity projection (MIP). To determine the most optimal concentration of SPIO to obliterate the high signal intensity of water, a phantom experiment was conducted with various concentrations of SPIO-water mixture. Two radiologists evaluated pre- and postcontrast MRCPS. The contrast enhancement was assessed on the basis of loss of signal intensity in the stomach and duodenum. Results : In the phantom experiment, a significant increase of percentage of signal intensity loss (PSIL) occurred in concentration of 22.4 ugFe/ml (Feridex1 ml diluted with water 500 ml). Postcontrast MRCP showed an improved image quality compared with precontrast images. The rate of improvement in the diagnosis of diseases of the common bile duct and pancreatic duct was 25% (12/48). Conclusion : In patients with suspected biliary tract and pancreatic diseases, the SPIO is useful as a negative oral contrast agent for MRCP and provides an improvement of image quality.

  • PDF

Metal Artifact Caused by Magnetic Field Strength and Sequence on T1WI-MRI (자기공명영상에서 자장세기와 시퀀스에 따른 아티팩트 변화)

  • Ko, Seong-Jin
    • The Journal of the Korea Contents Association
    • /
    • v.10 no.9
    • /
    • pp.302-308
    • /
    • 2010
  • In MRI, the Ferromagnetic artifact is generated by the metalization within in which the before inspection removal is impossible and the distortion of an image is brought. The distortion measure according to the steel for each sequence of T1 image and magnetic field intensity are analyzed and minimized method is looked into. We used SIEMENS 1.5T and 3.0T MRI for experiment equipment. First, it places within the Phantom making a metalization(Ti+Al, Stainless, Nitinol) on 1.5T, 3.0T MRI and the T1 weighted image for each Sequence is acquired. The distortion of an image and about adjacent portion change of the metal material were compared through the obtained image, we analyzed. In all metalizations, a distortion was generated and a distortion was few in particularly, and Titanium-Aluminium alloy. And the extent of a distortion was worse image in the Turbo spin Echo. The use of the Titanium-Aluminium alloy the inserted in an internal material of the metalization is recommend. and, equipment of 1.5T the patient inserting a metal in an internal is used in an inspection than equipment of 3.0T. Also, the sequence is suitable when it obtains the optimum T1 weighted image of an impersonate to use the Turbo spin Echo.