• 제목/요약/키워드: Turbine generator

검색결과 997건 처리시간 0.051초

원전 터빈 발전기 비틀림 진동기준 국제표준규격(ISO 22266-1) 적용 사례 (Application Case of ISO 22266-1 for Establishing the Torsional Vibration Criteria of a Nuclear Turbine Generator)

  • 정혁진;송우석;이혁순
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2010년도 춘계학술대회 논문집
    • /
    • pp.225-226
    • /
    • 2010
  • ISO 22266-1 issued in May 2009 provides guidelines for applying shaft torsional vibration criteria, under normal operating conditions, for the coupled shaft system and long blades of a turbine generator set. In case that a turbine generator vendor do not meet the separation margin of torsional natural frequencies in the technical specifications of the purchaser, this standard can present the reasonable and objective criteria about torsional vibration which both purchaser and supplier can agree on, while ensuring the integrity of turbine generator. This paper describes the application case of ISO 22266-1 for the establishment of torsinal vibration criteria under retrofitting the turbine generator of 'U' nuclear power plant.

  • PDF

Development of a Reclosing Scheme for Reduction of Turbine Generator Shaft Torsional Torques: A Decision Method to Achieve Optimal Reactor Capacity

  • Oh, Yun-Sik;Seo, Hun-Chul;Yang, Jeong-Jae;Kim, Chul-Hwan
    • Journal of Electrical Engineering and Technology
    • /
    • 제9권4호
    • /
    • pp.1145-1153
    • /
    • 2014
  • It is well known that line switching operations like reclosing are able to cause transient power oscillations which can stress or damage turbine generators. This paper presents a reclosing scheme to reduce the shaft torsional torques of turbine generators by inserting an additional reactor. A novel method to determine optimal reactor capacity to minimize the torsional torque generated in a turbine generator is also proposed. In this paper, the turbine generator shaft is represented by a multi-mass model to measure torsional torques generated in the shaft between the turbine and the generator. Transmission systems based on actual data from Korea are modeled to verify the proposed scheme using ElectroMagnetic Transient Program (EMTP) software. The simulation results clearly show the effectiveness of the proposed scheme and torsional torque can be minimized by applying the proposed scheme.

스트레스 모델을 이용한 터빈 축계의 비틀림 응력 예측 (Torsional Stress Prediction of Turbine Rotor Train Using Stress Model)

  • 이혁순;유성연
    • 한국소음진동공학회논문집
    • /
    • 제23권9호
    • /
    • pp.850-856
    • /
    • 2013
  • Torsional interaction between electrical network phenomena and turbine-generator shaft cause torsional stress on turbine-generator shaft and torsional fatigue fracture on vulnerable component, but the prediction of the torsional stress is difficult because the torsional stress is occurred instantly and randomly. Therefore continuous monitoring of the torsional stress on turbine-generator shaft is necessary to predict the torsional fatigue, but installing the sensors on the surface of the shaft directly to monitor the stress is impossible practically. In this study torsional vibration was measured using magnetic sensor at a point of turbine-generator rotor kit, the torsional stress of whole train of rotor kit was calculated using rotor kit's stress model and the calculated results were verified in comparison with the measured results using strain gauge at several point of turbine-generator rotor kit. It is expected that these experiment results will be used effectively to calculate the torsional stress of whole train of turbine-generator rotor in power plants.

스트레스 모델을 이용한 터빈 축계의 비틀림 응력 예측 (Torsional stress prediction of turbine rotor train using stress model)

  • 이혁순;유성연
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2013년도 추계학술대회 논문집
    • /
    • pp.862-867
    • /
    • 2013
  • Torsional interaction between electrical network phenomena and turbine-generator shaft cause torsional stress on turbine-generator shaft and torsional fatigue fracture on vulnerable component, but the prediction of the torsional stress is difficult because the torsional stress is occurred instantly and randomly. Therefore continuous monitoring of the torsional stress on turbine-generator shaft is necessary to predict the torsional fatigue, but installing the sensors on the surface of the shaft directly to monitor the stress is impossible practically. In this study torsional vibration was measured using magnetic sensor at a point of turbine-generator rotor kit, the torsional stress of whole train of rotor kit was calculated using rotor kit's stress model and the calculated results were verified in comparison with the measured results using strain gauge at several point of turbine-generator rotor kit. It is expected that these experiment results will be used effectively to calculate the torsional stress of whole train of turbine-generator rotor in power plants.

  • PDF

대용량 발전소 재열재생 증기터빈 제어알고리즘에 관한 고찰 (A Study on Turbine Control Algorithms for Large Steam Turbine in a Power Plant)

  • 최인규;정창기
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2008년도 제39회 하계학술대회
    • /
    • pp.1665-1666
    • /
    • 2008
  • There are three main devices such as boiler producing steam, turbine driving generator and generator producing electricity. An electrical generator in power plant is driven and maintained its speed at rated by steam turbine which is coupled into generator directly. Therefore after the steam turbine reaches its rated speed and the generator gets into parallel operation with power grid, the electrical power can be increased by turbine controller or governor. The first governor was invented by James Watts for the steam engine to be maintained at a constant speed. The first governor by him was mechanical type with fly balls. The electrical type governor was created due to the progress of electronic devices such as operational amplifiers or integrated circuits. and Today digital electronic type of governor is being widely used in most prime movers.

  • PDF

발전기교체로 인한 축계의 비틀림 고유주파수 영향 및 측정결과 고찰 (Effects of Generator Retrofit on Torsional Natural Frequency of Turbine-generator Train and Study on Measurement Results)

  • 이혁순;유성연
    • 한국소음진동공학회논문집
    • /
    • 제23권3호
    • /
    • pp.267-273
    • /
    • 2013
  • Recently, turbine-generators have been replaced for the integrity reinforcement and the efficiency improvement, also, the blade's failures of LP turbines due to torsional vibration have been reported. Excessive torsional vibrations can result in failures of components. The severity of torsional oscillations and stress depends upon the separation margin between the excitation frequencies and torsional natural frequencies. Therefore it is needed to measure the torsional natural frequencies after replacement of the components to conform the separation margin of torsional natural frequencies. In this study torsional vibration measurements were performed after LP turbine and generator replacement and the torsional natural frequencies for the turbine-generator train were calculated to evaluate the effects of generator replacement on torsional natural frequencies of turbine-generator train. It is expected that these evaluation results will be used effectively to identify the root causes of torsional vibration problems.

Performance Comparison of Two Wind Turbine Generator Systems Having Two Types of Control Methods

  • Saito, Sumio;Sekizuka, Satoshi
    • International Journal of Fluid Machinery and Systems
    • /
    • 제2권1호
    • /
    • pp.92-101
    • /
    • 2009
  • The purpose of this paper is to gain a greater understanding of the performance of practical wind turbine generating systems with differing output power controllers and controlling means for wind turbine speed. Subjected wind turbines, both equipped with an asynchronous power generator, are located at two sites and are defined as wind turbine A and wind turbine B in this study, respectively. Their performance differences are examined by measuring wind speed and electric parameters. The study suggests that both wind turbines have a clear linkage between current and output power fluctuations. Comparison of the fluctuations to wind speed fluctuation, although they are triggered primarily by wind speed fluctuation, clearly indicates the specific behaviors inherent to the respective turbine control mechanisms.

Field Adaptability Test for the Full Load Rejection of Nuclear Turbine Speed Controllers using Dynamic Simulator

  • Choi, In-Kyu;Kim, Jong-An;Woo, Joo-Hee
    • 조명전기설비학회논문지
    • /
    • 제23권7호
    • /
    • pp.67-74
    • /
    • 2009
  • This paper describes the speed control functions of the typical steam turbine speed controllers and the test results of generator load rejection simulations. The goal of the test is to verify the speed controller's ability to limit the steam turbine's peak speed within a predetermined level in the event of generator load loss. During normal operations, the balance between the driving force of the steam turbine and the braking force of the generator load is maintained and the speed of the turbine-generator is constant. Upon the generator's load loss, in other word, the load rejection, the turbine speed would rapidly increase up to the peak speed at a fast acceleration rate. It is required that the speed controller has the ability to limit the peak speed below the overspeed trip point, which is typically 110[%] of rated speed. If an actual load rejection occurs, a substantial amount of stresses will be applied to the turbine as well as other equipments, In order to avoid this unwanted situation, not an actual test but the other method is necessary. We are currently developing the turbine control system for another nuclear power plant and have plan to do the simulation suggested in this paper.

풍력-디젤 하이브리드 발전시스템 모델링에 관한 연구 (Modeling of Hybrid Generation System with Wind Turbine and Diesel Generator)

  • 김재언
    • 한국산학기술학회논문지
    • /
    • 제13권4호
    • /
    • pp.1806-1813
    • /
    • 2012
  • 본 논문은 도서지역에서 현실적으로 가장 간단히 적용될 수 있는 풍력-디젤 하이브리드 발전시스템의 모델링 방법을 제시하였다. 모델링 대상으로는 풍력발전기는 농형유도발전기를, 디젤발전기는 동기발전기를 대상으로 하였고, 각각에 대한 파라미터 설정과 제어기의 모델링은 현재 제작 및 판매되고 있는 소용량급들에 대한 자료수집과 분석을 통하여 도출된 기준값에 근거하였다. 제안된 풍력-디젤 하이브리드 발전시스템 모델링방법의 타당성을 입증하기 위하여 국내 낙도지역을 대상으로 하여 모델링하고, 그 결과를 시뮬레이션하여 고찰하였다.

대형 풍력발전기용 소형 모터-발전기 시스템 설계 (Design of a Small-Scale Motor-Generator System for a Large Wind Turbine)

  • 임채욱
    • 한국유체기계학회 논문집
    • /
    • 제20권1호
    • /
    • pp.48-52
    • /
    • 2017
  • Small-scale motor-generator sets have been used in laboratories for verification of real large wind turbines whose rated power are more than 1 MW. In this paper, a result of designing a small-scale motor-generator system, which is composed of motor, gear box, flywheel, and generator, is presented in the aspect of speed response. Design objective is to make a small-scale motor-generator system have the same time constant and optimal tip speed ratio region as a real MW wind turbine. A small-scale 3.5 kW motor-generator system for emulating response of a 2 MW wind turbine is considered and designed.