• 제목/요약/키워드: Turbine diameter

검색결과 213건 처리시간 0.02초

노즐 구경에 따른 초소수력 펠턴 터빈의 효율 및 성능 특성 (Performance Characteristics and Efficiencies of Micro-Hydro Pelton Turbine with Nozzle Diameter Variation)

  • 조인찬;박주훈;신유환;김광호;정진택;김동익
    • 한국유체기계학회 논문집
    • /
    • 제18권3호
    • /
    • pp.60-65
    • /
    • 2015
  • This paper deals with performance characteristics and efficiencies of Pelton turbine can be applied as one of ERDs (Energy Recovery Devices) of PRO (Pressure Retarded Osmosis) system for desalination. The objective of this study is experimentally estimating the performance of micro-scale Pelton turbine for PRO pilot plant. Especially the performance characteristics with variations of jet nozzle diameter of Pelton turbine are discussed in detail. In order to do this, lab scale test rig of Pelton turbine was made for performance test, which includes water tank, Pelton wheel with buckets, jet nozzle and torque brake and so on. The parameter effects related on Pelton turbine's efficiency were investigated and discussed on the influence of the variations of load and speed ratio.

나셀 변환 함수를 이용한 풍력터빈 출력성능평가 (Wind Turbine Power Performance Testing using Nacelle Transfer Function)

  • 김현우;고경남;허종철
    • 한국태양에너지학회 논문집
    • /
    • 제33권4호
    • /
    • pp.51-58
    • /
    • 2013
  • A study on power performance testing of a wind turbine which has no met-mast at a distance of 2~4 rotor diameter was carried out using the Nacelle Transfer Function, NTF, according to IEC 61400-12-2. The wind data for this study was measured at HanKyoung wind farm of Jeju Island. The NTF was modeled using the correlation between wind speeds from the met-mast and from the wind turbine nacelle within 2~4 rotor diameter from the met-mast. The NTF was verified by the comparison of estimated Annual Energy Productions, AEPs, and binned power curves. The Nacelle Power Curve, NPC, was derived from the nacelle wind speed data corrected by NTF. The NPC of wind turbine under test and the power curve offered by the turbine manufacturer were compared to check whether the wind turbine is properly generating electricity. Overall the NPC was in good agreement with the manufacturer's power curve. The result showed power performance testing for a wind turbine which has no met-mast at a distance of 2~4 rotor diameter was successfully carried out in compliance with IEC 61400-12-2.

터빈 동익의 프로파일 정의 위치에 따른 초음속 터빈 성능변화에 대한 전산해석 연구 (Numerical Study of the Supersonic Turbine Performance Variation with respect to the Rotor Profile Diameter)

  • 박편구;정은환;김진한
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2007년도 제29회 추계학술대회논문집
    • /
    • pp.297-301
    • /
    • 2007
  • 초음속 충동형 터빈과 같이 종횡비가 작은 경우 로터 익형은 반경방향으로 동일한 단면을 갖는 형태로 구현된다. 이 경우 터빈 로터는 터빈 동익의 프로파일 직경에 따라 설계에서 의도하지 않은 유로면적분포와 터빈 성능의 차이를 보인다. 본 연구에서는 터빈 동익 프로파일을 정의하는 직경이 터빈 성능에 미치는 영향을 고찰하기 위하여 3개의 다른 위치에서 정의된 터빈 로터에 대한 유동해석을 수행하고 결과를 고찰하였다. 계산 결과 팁에서 단면이 정의된 경우 설계에서 의도한 유로면적 변화를 보이며 다른 프로파일 직경에서 정의된 터빈에 비해 우수한 성능을 보임을 확인하였다.

  • PDF

다변풍속 적응형 Darrieus-Sauonius 초합 수직푹 풍력발전 시스템의 설계 (A design of vertical axis wind power generating system combined with Darrieus-Savonius for adaptation of variable wind speed)

  • 서영택;오철수
    • 대한전기학회논문지
    • /
    • 제45권2호
    • /
    • pp.185-192
    • /
    • 1996
  • This paper presents a design of vertical axis Darrieus wind turbine combine with Savonius for wind-power generating system to be adapted for variable wind speed. The wind turbine consists of two troposkien- and four Savonius-blades. Darrieus turbine is designed with diameter 9.4[m], chord length 380[mm], tip speed ratio 5. Savonius turbine is designed with diameter 1.8[m], height 2[m], tip speed ratio 0.95. The design of turbine is laid for the main data of rated wind speed 10[m/s], turbine speed 101.4[rpm]. The generating power is estimated to maximum power 20[kW], and this is converted to commercial power line by means of three phase synchronous generator-inverter system. Generating system is designed for operation on VSVF(variable speed variable frequency) condition and constant voltage system.

  • PDF

방출 수 에너지 하베스팅을 위한 수차 설계에 관한 연구 (A Study of Hydraulic Turbine Design for The Discharge Water Energy Harvesting)

  • 정한석;김충혁
    • 한국전기전자재료학회논문지
    • /
    • 제34권1호
    • /
    • pp.78-83
    • /
    • 2021
  • We modeled the helical turbine and three modified helical turbines for the structure of the hydraulic turbine for discharge water energy harvesting. A structure that can reduce the load applied to the blade by placing a center plate is our basic concept. The shape was reduced to 1/5, fixed to a size of 240 mm in height and 247 mm in diameter, and modeled by changing the width and the angle of the hydraulic turbine blade. The pipe inner diameter of the simulation pipeline equipment is 309.5 mm, and the simulation section was 4 m in the entire section. The flow velocity was measured for two cases, 1.82 m/s and 2.51 m/s, with the parameters being the amount of power generation, hydraulic turbine's torque, and hydraulic turbine's rotation speed. The measurement results confirmed that the flow velocity at the center, which has no pipe surface resistance, has a great influence on the amount of power generation; therefore, the friction area of the turbine blade should be increased in the center area. In addition, if the center plate is placed on the helical turbine, durability can be improved as it reduces the stress on the blade.

마이크로 가스 터빈용 연소기의 연료 노즐의 유량 분배에 관한 수치 해석적 연구 (Numerical Study on Flow Distribution of Fuel Nozzles for a Combustor in a Micro Gas Turbine)

  • 김태훈;도규형;한용식;김명배;최병일
    • 한국연소학회지
    • /
    • 제19권4호
    • /
    • pp.8-13
    • /
    • 2014
  • Flow distribution of fuel nozzles for a combustor in a micro gas turbine is numerically investigated. The fuel supply system for the present study has 12 single nozzles with a diameter of several hundred micrometers. A uniform temperature distribution of a combustor outlet should be achieved for maximizing the lives of the turbine blades and nozzle guide vanes. For this, it is very important to uniformly supply fuel to a combustor. In order to investigate flow distributions of fuel nozzles, numerical models for fuel nozzles are made and solved by a commercial code, ANSYS FLUENT. An effect of a fuel nozzle diameter and fuel flow rates on flow distribution of fuel nozzles is numerically investigated. As a result, non-uniformity is increasing as a diameter of a single fuel nozzle increases. Finally, an appropriate diameter of a single fuel nozzle is suggested.

고낙차 수력 펌프/터빈 런너에 대한 진동 모드해석 및 실험 (Modal Analysis and Testing of a High Head Pump/Turbine Runner)

  • 류석주;하현천
    • 소음진동
    • /
    • 제8권6호
    • /
    • pp.1062-1068
    • /
    • 1998
  • This paper describes the vibration characteristics of a high head pump-turbine runner. with nine blades and an outer diameter of 4.410 mm. of the pumped storage power plant. Mode shapes and natural frequencies were obtained by means of both the finite element analysis and modal testing. both in air and in water. The natural frequencies in air were calculated using the finite element method by ANSYS software. In order to confirm calculation results. the natural frequencies and mode shapes of the runner were measured using a hydraulic exciter both in air and in water. Natural frequencies of the pump-turbine runner were found at 174. 310 Hz in air, and at 107. 184 Hz in water. The first mode shape is flat plate mode with two nodal diameter and the second one is also flat plate mode with three nodal diameter. It can be shown that the natural frequencies of the pump-turbine runner in water is reduced approximately 40 % due to additional mass effect. Natural frequencies in air predicted by ANSYS software are in good agreement with test results.

  • PDF

고효율 소형 수직형 풍력터빈의 공력성능에 관한 실험적 연구 (An Experimental Study on the Aerodynamic Performance of High-efficient, Small-scale, Vertical-axis Wind Turbine)

  • 박준용;이명재;이승진;이승배
    • 대한기계학회논문집B
    • /
    • 제33권8호
    • /
    • pp.580-588
    • /
    • 2009
  • This paper summarizes the experimentally-measured performance of small-scale, vertical-axis wind turbine for the purpose of improving the aerodynamic efficiency and its controllability. The turbine is designed to have a Savonius-Type rotor with an inlet guide-vane and an side guide-vane so that it achieves a higher efficiency than any lift- or drag-based turbines. The main design factors for this high-efficient, vertical wind turbine are the number of blades (Z), and the aspect ratio of Height/Diameter (H/D) among many. The basic model has the diameter of 580mm, the height of 464mm, and the blade number of 10. The maximum power coefficient of 0.50 was experimentally measured for the above-mentioned specifications. The inlet-guide vane ensures the maximum efficiency when the angle of attack to the rotor blade lies between $15^{\circ}$ and $20^{\circ}$. This experimental results for the vertical-axis wind turbine can be applied to the preliminary design of turbine output curve based on the wind characteristics at the proposed site by controlling its aerodynamic performance given as a priori.

Wind-lens turbine design for low wind speed

  • Takeyeldein, Mohamed M.;Ishak, I.S.;Lazim, Tholudin M.
    • Wind and Structures
    • /
    • 제35권3호
    • /
    • pp.147-155
    • /
    • 2022
  • This research proposes a wind-lens turbine design that can startup and operate at a low wind speed (< 5m/s). The performance of the wind-lens turbine was investigated using CFD and wind tunnel testing. The wind-lens turbine consists of a 3-bladed horizontal axis wind turbine with a diameter of 0.6m and a diffuser-shaped shroud that uses the suction side of the thin airfoil SD2030 as a cross-section profile. The performance of the 3-bladed wind-lens turbine was then compared to the two-bladed rotor configuration while keeping the blade geometry the same. The 3-bladed wind-lens turbine successfully startup at 1m/s and produced a torque of 66% higher than the bare turbine, while the two-bladed wind-lens turbine startup at less than 4m/s and produced a torque of 186 % higher than the two-bladed bare turbine at the design point. Findings testify that adding the wind-lens could improve the bare turbine's performance at low wind speed.

5MW급 해상풍력발전시스템용 Suction Caisson 하부구조물 적합성 평가 (An evaluation on suitability of suction caisson foundation for 5MW offshore wind turbine)

  • 김용천;박현철;정진화;권대용;이승민
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 추계학술대회 초록집
    • /
    • pp.183.2-183.2
    • /
    • 2010
  • A three-dimensional numerical modeling using the finite element method for the suction caisson are described to decide suitability as foundation of offshore wind turbine in this paper. In the simulation, soil-structure interaction is defined by comparing experiment data. The reaction of monopod suction caisson is presented by moment loading which was calculated by FAST. Tendency of suction caisson appeared by difference of length and diameter of skirt under coupled loading. Length and diameter of skirt are suggested and evaluated as a offshore wind turbine.

  • PDF