• Title/Summary/Keyword: Turbine Performance Test

Search Result 449, Processing Time 0.029 seconds

Introduction to Daegwallyeong Wind Turbine Test Site and Field Test Study (대관령 풍력실증단지 및 실증연구 소개)

  • Yoo Neung-Soo;Nam Yun-Soo;Lee Jung-Wan
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.5-8
    • /
    • 2005
  • This paper aims to introduce the Daegwallyeong wind turbine test site which is the first official wind turbine test site in Korea. The current status of test site, the characteristics, the projects performed and future plan of this test site are described. The results of wind condition measurements and monitoring system established by the Kangwon National University are presented. The importance of field test is also commented.

  • PDF

Experimental Investigation of Turbopump Turbine : Turbine Performance and Effect of Nozzle-Rotor Clearance (터보펌프 터빈의 성능 및 노즐-로터 간극의 영향에 대한 실험적 고찰)

  • Jeong Eun-Hwan;Kang Sang-Hun;Shin Dong-Yoon;Park Pyu-Goo;Kim Jin-Han
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.10 no.2
    • /
    • pp.78-86
    • /
    • 2006
  • This paper presents the performance test result of the 30-ton class turbopump turbine. Test has been conducted using high pressure cold air, The turbine overall performance has been measured for various pressure ratio and rotational speed settings. The nozzle-rotor clearance effect on turbine performance also has been tested for the four kinds of the nozzle-rotor clearance values. We found that turbine efficiency rated 51.1% at its design velocity ratio and pressure ratio of 13.5. We also found that turbine efficiency can be increased by 3.5% for approximately 1mm decrement of the nozzle-rotor clearance from its nominal value.

Axial Turbine Performance Evaluation in a Rotating Facility (회전 환경에서의 축류 터빈 성능평가)

  • Yoon, Yong-Sang;Song, Seung-Jin;Kim, Hong-Won;Cho, Sung-Hee
    • The KSFM Journal of Fluid Machinery
    • /
    • v.4 no.3 s.12
    • /
    • pp.46-52
    • /
    • 2001
  • This paper describes a turbine test program conducted at Seoul National University(SNU). To measure blades' aerodynamic performance, either linear(2-Dimensional) or annular(3-Dimensional) cascades are often used. However, neither cascade can consider effects such as those due to rotation or rotor-stator interaction. Therefore, a rotating test facility for axial turbines has been designed and built at SNU, and its description is given in this paper. The results from an axial turbine performance test are presented. At the design point, the measured efficiency agrees with the efficiency predicted by a meanline analysis. At off design points, however, the measured and predicted efficiencies diverge. The most likely cause is hypothesized to be the inaccuracy of correlations used in the meanline analysis at off design points.

  • PDF

Development of Flapping Type Wind Turbine System for 5 kW Class Hybrid Power Generation System

  • Lee, Haseung;Kong, Changduk;Park, Hyunbum
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.17 no.2
    • /
    • pp.167-174
    • /
    • 2016
  • Even though the differential drag type machines of the vertical wind turbines are a bit less efficient than the lift type machines such as Darrieus type machines, they have an advantage of low starting torque. The flapping blade type wind turbine is a specific type of the differential drag machines, and it has no need for orientation as well as quite low starting torque. This work is to develop an innovative 5kW class flapping type vertical wind turbine system which will be applicable to a hybrid power generation system driven by the diesel engine and the wind turbine. The parametric study was carried out to decide an optimum aerodynamic configuration of the wind turbine blade. In order to evaluate the designed blade, the subscale wind tunnel test and the performance test were carried out, and their test results were compared with the analysis results.

Construction of small hydropower facilities performance evaluation system (소수력 발전설비 성능평가 시스템 구축)

  • Kim, Youngjoon;Kim, Yongyeol;Cho, Yong;Ko, Jaemyoung
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.193.2-193.2
    • /
    • 2010
  • Domestic hydroelectric power plants has been manufactured as the design condition by the demand. Hydraulic turbine power plants operating at appointed load shall be operate stable in terms of pressure, discharge, rotational speed and torque. A performance guarantees for hydro turbines shall be contain, as a minimum, guarantees covering power, discharge and specific hydraulic energy, efficiency, maximum momentary overspeed and maximum momentary pressure and maximum steady-state runaway speed, as well as guarantees related to cavitation. But, present in Korea, the absence of testing laboratories and technical criteria for the performance test of small hydropower degrades the efficiency of the domestic hydropower machines, and makes it difficult to objectively evaluate the performance of hydro turbine. Therefore We planned making a basis of performance test of small hydropower turbine by using our flowmeter calibration system the largest one in Korea. We planned the maximum measurable power of hydro turbine will be 200 kW in our system.

  • PDF

Construction of small hydropower facilities performance evaluation system (소수력 발전설비 성능평가 시스템 구축)

  • Kim, Youngjoon;Cho, Yong;Ko, Jaemyoung
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.206.2-206.2
    • /
    • 2011
  • Domestic hydroelectric power plants has been manufactured as the design condition by the demand. Hydraulic turbine power plants operating at appointed load shall be operate stable in terms of pressure, discharge, rotational speed and torque. A performance guarantees for hydro turbines shall be contain, as a minimum, guarantees covering power, discharge and specific hydraulic energy, efficiency, maximum momentary overspeed and maximum momentary pressure and maximum steady-state runaway speed, as well as guarantees related to cavitation. But, present in Korea, the absence of testing laboratories and technical criteria for the performance test of small hydropower degrades the efficiency of the domestic hydropower machines, and makes it difficult to objectively evaluate the performance of hydro turbine. Therefore We planned making a basis of performance test of small hydropower turbine by using our flowmeter calibration system the largest one in Korea. We planned the maximum measurable power of hydro turbine will be 200 kW in our system.

  • PDF

Air Similarity Performance Test of Turbopump Turbine (터보펌프용 터빈 공기상사 성능시험)

  • Lim Byeung-Jun;Hong Chang-Uk;Kim Jin-Han
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.10 no.2
    • /
    • pp.39-45
    • /
    • 2006
  • In liquid rocket engine turbopump, it is difficult to evaluate turbine performance for high pressure, high temperature circumstance. Turbine test is often done by using air at similarity condition so that the turbine can be tested at lower risk. This paper describes an air similarity test program of liquid rocket engine turbopump turbine. A test facility has been built to evaluate aerodynamic performance of turbines. The test facility consists of high pressure air supply system, mass flow rate measuring nozzle, test section, hydraulic break, exit orifice for pressure control, instrumentation and control system. This paper also presents how to decide the similarity conditions of the turbine test and describes how to control test conditions. Relative standard deviation of measurement parameter was less than 1% and measured turbine efficiency corresponded with analysis result within 2%.

An Experimental Study of 3-D Axial Type Turbine Performance with Various Axial Gaps between the Rotor and Stator (축류형 터빈에서 정${\cdot}$동익 축방향 거리의 변화에 대한 실험적 연구)

  • Kim Jong-Ho;Kim Eun-Jong;Cho Soo-Yong
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.541-544
    • /
    • 2002
  • The turbine performance test of an axial-type turbine is carried out with various axial gap distances between the stator and rotor. The turbine is operated at the low pressure and speed, and the degree of reaction is 0.373 at the mean radius. The axial-type turbine consists of ons-stage and 3-dimensional blades. The chord length of rotor is 28.2mm and mean diameter of turbine is 257.56mm. The power of turbo-blower for input power is 30kW and mass flow rate is $340m^3/min\;at\;290mmAq$ static-pressure. The RPM and output power are controlled by a dynamometer connected directly to the turbine shaft. The axial gap distances are changed from a quarter to two times of stator axial chord length, and performance curves are obtained with 7 different axial gaps. The efficiency is dropped about $5{\%}$ of its highest value due to the variation of axial gap on the same non-dimensional mass flow rate and RPM, and experimental results show that the optimum axial gap is 1.0-1.5Cx.

  • PDF

Power performance Testing of Small Wind Turbine Generator System (소형 풍력발전시스템의 출력성능검사)

  • Kim, Hyeon-Ki;Kim, Byeong-Min;Yoo, Neung-Soo
    • Journal of Industrial Technology
    • /
    • v.31 no.A
    • /
    • pp.123-128
    • /
    • 2011
  • In this study, procedures, a power performance testing system of Wind Turbine System Research Center of Kangwon National University is introduced. Test prodedures and results are presented on a stand-alone vertical-axis 200W wind turbine manufactured by Geum-Poong Energy Inc.. Power performance test is performed according to IEC standard. The test results are compared with the power performance standard. Also, the effects of normalization and disturbed sectors are considered.

  • PDF

Air Layer Effect on the Performance Improvement of a Cross-Flow Hydro Turbine

  • Choi, Young-Do;Shin, Byeong-Rog;Lee, Young-Ho
    • The KSFM Journal of Fluid Machinery
    • /
    • v.13 no.4
    • /
    • pp.37-43
    • /
    • 2010
  • The purpose of this study is not only to investigate the effects of air layer in the turbine chamber on the performance and internal flow of the cross-flow turbine, but also to suggest a newly developed air supply method. Field test is performed in order to measure the output power of the turbine by a new air supply method. CFD analysis on the performance and internal flow of the turbine is conducted by an unsteady state calculation using a two-phase flow model in order to embody the air layer effect on the turbine performance effectively. The result shows that air layer effect on the performance of the turbine is considerable. The air layer located in the turbine runner passage plays the role of preventing a shock loss at the runner axis and suppressing a recirculation flow in the runner. The location of air suction hole on the chamber wall is very important factor for the performance improvement. Moreover, the ratio between air from suction pipe and water from turbine inlet is also significant factor of the turbine performance.