• Title/Summary/Keyword: Turbine Performance Improvement

Search Result 112, Processing Time 0.015 seconds

International Activities for the Development of a Full Engine Simulation Program (엔진 시뮬레이션 프로그램 개발의 국제 동향)

  • Jin, Sang-Wook;Kim, Kui-Soon;Choi, Jeong-Yeol;Ahn, Iee-Ki;Yang, Soo-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.04a
    • /
    • pp.250-257
    • /
    • 2007
  • The development of aircraft engine requires a lot of time and cost to estimate system attributes such as performance, reliability, stability and life. A virtual engine test based on "Numerical test cell" can extremely reduce the time and cost for the development of a hardware by coupling multidisciplinary analyses. This paper presents the development activities of full engine simulation programs in U.S.A. and Europe. NASA Glenn research center of U.S.A. leads the development efforts of NPSS(Numerical Propulsion System Simulation) by assembling the existing codes and improving their functions. VIVACE (Value Improvement through a Virtual Aeronautical Collaborative Enterprise), a consortium of universities, research centers and companies in Europe is developing the PROOSIS(PRopulsion Object Oriented SImulation Software) by integrating the various programs of the institutes. The capability for the domestic development is also estimated by surveying the current status.

  • PDF

Removal of Alkali Metal Ion using Inorganic Ion Exchanger (무기이온교환제를 이용한 알카리 금속이온 제거)

  • Ha, Ji-Won;Yi, Kwang Bok;Lee, Si Hyun;Rhee, Young-Woo;Kim, Jong-Nam
    • Korean Chemical Engineering Research
    • /
    • v.46 no.2
    • /
    • pp.423-429
    • /
    • 2008
  • Currently, Ash-free clean coal producing process by solvent extraction is under development. The produced ash-free clean coal can be directly combusted in a gas turbine which results in substantial improvement of power generation efficiency. However, the clean coal produced by the solvent extraction still contain trace amount of alkali metal which may cause corrosion on turbine blades during the direct combustion. In present work ${\alpha},{\beta}$-metal (Zr and Ti) phosphates and H-Y zeolite were synthesized and their ion exchange characterizations were investigated for the application on alkali metal removal for clean coal production. $Na^+$ ion removal capacities of the metal phosphates and H-Y zeolite were measured and compared in both aqueous solution (100 ppmw, $Na^+$) and coal dissolved N-methyl-2-pyrrolidone (NMP, 12 ppmw $Na^+$) at elevated temperature. In aqueous solution, the ${\beta}$ form metal phosphates showed very high ion exchange capacities compared to ${\alpha}$ form. ${\beta}$ form metal phosphates also showed higher $Na^+$ removal capacities than H-Y zeolite. In ion exchange medium of NMP, all the ${\alpha}$ form metal phosphates showed over 90% of $Na^+$ ion removal efficiency in the temperature range of 200 to 400 while that of H-Y zeolite decreased as a half when the temperature was over 350. In addition, the regenerated metal phosphates by acid treatment showed no sign of degradation in $Na^+$ removal efficiency. Among the metal phosphates used, $Zr_{0.75}Ti_{0.25}(HPO_4)_2$ showed the best performance in $Na^+$ removal and is expected to be the most suitable inorganic ion exchanger for the alkali metal removal process.