• Title/Summary/Keyword: Turbine Impeller

Search Result 91, Processing Time 0.024 seconds

Hydrodynamic Design of Thrust Ring Pump for Large Hydro Turbine Generator Units

  • Lai, Xide;Zhang, Xiang;Chen, Xiaoming;Yang, Shifu
    • International Journal of Fluid Machinery and Systems
    • /
    • v.8 no.1
    • /
    • pp.46-54
    • /
    • 2015
  • Thrust-ring-pump is a kind of extreme-low specific speed centrifugal pump with special structure as numerous restrictions from thrust bearing and operation conditions of hydro-generator units. Because the oil circulatory and cooling system with thrust-ring-pump has a lot of advantages in maintenance and compactness in structure, it has widely been used in large and medium-sized hydro-generator units. Since the diameter and the speed of the thrust ring is limited by the generator set, the matching relationship between the flow passage inside the thrust ring (equivalent to impeller) and oil bath (equivalent to volute) has great influence on hydrodynamic performance of thrust-ring-pump. On another hand, the head and flow rate are varying with the operation conditions of hydro-generator units and the oil circulatory and cooling system. As so far, the empirical calculation method is employed during the actual engineering design, in order to guarantee the operating performance of the oil circulatory and cooling system with thrust-ring-pump at different conditions, a collaborative hydrodynamic design and optimization is purposed in this paper. Firstly, the head and flow rate at different conditions are decided by 1D flow numerical simulation of the oil circulatory and cooling system. Secondly, the flow passages of thrust-ring-pump are empirically designed under the restrictions of diameter and the speed of the thrust ring according to the head and flow rate from the simulation. Thirdly, the flow passage geometry matching optimization between thrust ring and oil bath is implemented by means of 3D flow simulation and performance prediction. Then, the pumps and the oil circulatory and cooling system are collaborative hydrodynamic optimized with predicted head-flow rate curve and the efficiency-flow rate curve of thrust-ring-pump. The presented methodology has been adopted by DFEM in design process of thrust-ring-pump and it shown can effectively improve the performance of whole system.

원심압축기에서 물분사 압축과정에 대한 이론적 해석

  • Kang, Jeong-Seek;Cha, Bong-Jun;Yang, Soo-Seok
    • Aerospace Engineering and Technology
    • /
    • v.4 no.1
    • /
    • pp.18-24
    • /
    • 2005
  • Wet compression means the injection of water droplets into the compressor of gas turbines. This method decreases the compression work and increases the turbine output by decreasing the compressor exit temperature through the evaporation of water droplets inside the compressor. This paper provides thermodynamic and aerodynamic analysis on wet compression in a centrifugal compressor for a microturbine. The meanline performance analysis of centrifugal compressor is coupled with the thermodynamic equation of wet compression to get the meanline performance of wet compression. The most influencing parameter in the analysis is the evaporative rate of water droplets. It is found that the impeller exit flow temperature and compression work decreases as the evaporative rate increases. And the exit flow angle decreases as the evaporative rate increases.

  • PDF

Performance test for the compressor of 100kW APU (100kW급 보조동력장치용 압축기 성능시험)

  • Lim, Byeung-Jun;Cha, Bong-Jun;Yang, Soo-Seok;Lee, Kyoung-Jin;Baik, Ki-Young
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.655-660
    • /
    • 2001
  • The performance test of a centrifugal compressor for APU(Auxiliary Power Unit) which is developed by the collaborative research of KARI and Samsung TechWin has been conducted. The investigated compressor consists of a curved inlet, a centrifugal impeller, a channel diffuser and a plenum chamber. The experiments were carried out in an open-loop centrifugal compressor test rig driven by a turbine. For three different diffusers, overall performance data were obtained at 80%, 90% and 97% of design speed. For the initially designed wedge-type diffuser, test results showed that the compressor was operated at a higher mass flow rate than the design requirement. By reducing the diffuser throat area, the compressor operating range was shifted to lower mass flow rate range. The test result of redesigned wedge-type diffuser showed high pressure loss. To reduce the diffuser loss, diffuser inlet radius was increased and airfoil-type of diffuser was adopted. This airfoil-type diffuser showed reasonal results in terms of design requirement.

  • PDF

5-Axis Cross-Coupling Control System Based on a Novel Real-Time Tool Orientation Error Model (새로운 실시간 공구방향오차 모델에 기초한 5 축 연동제어 시스템)

  • Byun, Je-Hyung;Jee, Sung-Chul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.8
    • /
    • pp.48-53
    • /
    • 2010
  • 5-axis CNC machining now is getting popular because it can deal with complex shapes such as impeller, turbine blade and propeller without additional equipment or process, proving a set of various tool orientations. CAM software related to 5-axis machining is being developed quickly so that users can take advantage of potential capacities of 5-axis machine tools. However, only a few researches can be found in the area of control strategy development for 5-axis machining. This paper proposes a 5-axis cross-coupling control system based on a novel tool orientation error model. The proposed tool orientation error model provides accurate information on the tool orientation error in real time, which in turn enables directly controlling the tool orientation accuracy. The proposed control system also employs a contour error model to calculate the contour error and reflect it in the control as well. The accuracy of the proposed tool orientation error model is verified and the performance of the 5-axis cross-coupling control system in terms of both contouring and tool orientation accuracy is evaluated through computer simulations compared with existing 5-axis control systems.

The Control Technology of Cutter Path and Cutter Posture for 5-axis Control Machining (5축가공을 위한 공구경로 및 자세 제어 기술)

  • Hwang, Jong-Dae;Lim, Eun-Seong;Jung, Yoon-Gyo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.2
    • /
    • pp.1-8
    • /
    • 2011
  • 5-axis NC machining has a good advantage of the accessibility of tool motion by adding two rotary axes. It offers numerous advantages such as expanding machining fields in parts of turbo machineries like impeller, propeller, turbine blade and rotor, reasonable tool employment and great reduction of the set-up process. However, as adding two rotary axes, it is difficult to choose suitable machining conditions in terms of cutter path and cutter posture at a cutter contact point. Therefore in this paper, it is proposed to decide suitable machining condition through an experimental method such as adopting various cutter paths, cutter postures types. Also, in order to increase the efficiency of 5-axis machining, it is necessary to minimize the cutter posture changes and create a continuous cutter path while avoiding interference. This study, by using an MC-space algorithm for interference avoidance and an MB-spline algorithm for continuous control, is intended to create a 5-axis machining cutter path with excellent surface quality and economic feasibility. finally, this study will verify the effectiveness of the suggested method through verification processing.

Comparative study on the performance of Pod type waterjet by experiment and computation

  • Kim, Moon-Chan;Park, Warn-Gyu;Chun, Ho-Hwan;Jung, Un-Hwa
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.2 no.1
    • /
    • pp.1-13
    • /
    • 2010
  • A comparative study between a computation and an experiment has been conducted to predict the performance of a Pod type waterjet for cm amphibious wheeled vehicle. The Pod type waterjet has been chosen on the basis of the required specific speed of more than 2500. As the Pod type waterjet is an extreme type of axial flow type waterjet, theoretical as well as experimental works about Pod type waterjets are very rare. The main purpose of the present study is to validate and compare to the experimental results of the Pod type waterjet with the developed CFD in-house code based on the RANS equations. The developed code has been validated by comparing with the experimental results of the well-known turbine problem. The validation also extended to the flush type waterjet where the pressures along the duct surface and also velocities at nozzle area have been compared with experimental results. The Pod type waterjet has been designed and the performance of the designed waterjet system including duct, impeller and stator was analyzed by the previously mentioned m-house CFD Code. The pressure distributions and limiting streamlines on the blade surfaces were computed to confirm the performance of the designed waterjets. In addition, the torque and momentum were computed to find the entire efficiency and these were compared with the model test results. Measurements were taken of the flow rate at the nozzle exit, static pressure at the various sections along the duct and also the nozzle, revolution of the impeller, torque, thrust and towing forces at various advance speed's for the prediction of performance as well as for comparison with the computations. Based on these measurements, the performance was analyzed according to the ITTC96 standard analysis method. The full-scale effective and the delivered power of the wheeled vehicle were estimated for the prediction of the service speed. This paper emphasizes the confirmation of the ITTC96 analysis method and the developed analysis code for the design and analysis of the Pod type waterjet system.

Instrumentation for Performance Test of Turbo Compressor (터보 압축기 성능시험을 위한 계측기기 선정)

  • Park, Tae-Choon;Kang, Young-Seok;Yang, Soo-Seok
    • Aerospace Engineering and Technology
    • /
    • v.7 no.2
    • /
    • pp.46-52
    • /
    • 2008
  • The instrumentation was studied in order to measure aerodynamic performance and efficiency of a compressor as a component of a 5MW-class gas turbine for power generation. In case of an axial compressor, the distributions of static pressure on a casing can be obtained by averaging at each stage and those of total pressure and temperature in the flow field of the compressor can be measured with a Kiel temperature probe. In case of a centrifugal compressor, the static pressures at the hub and the tip, respectively, of an impeller exit are considerably different, so the pressures need to be measured at both positions and thereafter averaged. The distributions of static pressures in a diffuser and a deswirler are measured at ten positions along five streamlines in one pitch. In addition the flow field can be measured in detail by 5-hole Pitot tube in order to analyze the flow characteristics of the core flow region and wake region and the rotor-stator interaction of the compressor.

  • PDF

Upgrade Development of a Centrifugal Compressor for Marine Engine Turbochargers (선박용 터보차져 원심압축기의 성능향상 개발)

  • Oh, Jong Sik;Oh, Koon Sup;Yoo, Kwang Taek
    • The KSFM Journal of Fluid Machinery
    • /
    • v.3 no.1 s.6
    • /
    • pp.43-50
    • /
    • 2000
  • Upgrade development of a high pressure ratio centrifugal compressor in marine engine turbochargers is presented. A new matched operating point at increased speed of rotation was determined through system cycle analysis using the exisitng test data of turbine performance. Under some severe restrictions for geometric parameters, the state-of-the-art methods of both aerodynamic design and CFD analysis were applied, in which only an impeller, a vaned diffusor and some part of casing wall were modified. Prototype hardware was fabricated and assembled for system performance tests. Excellent performance in pressure ratio and efficiency was obtained over whole speed region. Reduced surge and choke margin was, however, observed at design speed of rotation.

  • PDF

A study on the Rapid Processing of Hydrolyzed Anchovy Paste and Its Quality Stability (효소분해법에 의한 페이스트형 속성 멸치젓의 제조 및 품질에 관한 연구)

  • HAN Bong-Ho;KIM Sang-Ho;CHO Hyun-Duk;CHO Man-Gi;BAE Tae-Jin
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.30 no.1
    • /
    • pp.79-87
    • /
    • 1997
  • A study on the processing method of anchovy hydrolysate paste (AHP) was carried out to improve the sensory quality of salted and fermented fish. Homogenized whole anchovy was hydrolyzed using commercial pretenses, Complex enzyme-2000 (CE, Pacific Chem. Co.) and Alcalase (AL, Novo), in a cylindrical vessel with 4 baffle plates and 6-bladed turbine impeller. Optimal pH, temperature, and enzyme concentration for the hydrolysis with CE and AL were $7.0,\;52^{\circ}C,\;7\%$, and $8.0,\;60^{\circ}C,\;6\%$, respectively. The rational amount of water for homogenization, agitation speed, and hydrolyzing time were $100\%\;(w/w)$, 100 rpm, and 210 min, respectively. To make the hydrolysate to paste type, it was effective to mix the additives, such as starch, soybean protein, agar, and carrageenan gum to the hydrolysate 5 min before the end of boiling at $100^{\circ}C$ for 30 min. Minimal NaCl concentration for long-term preservation was $15\%$, and this could be reduced to $12\%$ by adding $5\%$ of KCl. yield of the AHP based on the total nitrogen content was $94.6\~97.0\%,\;and\;86.0\~89.2\%$, of the nitrogen was amino nitrogen. Salinity, pH and histamine content of the AHP prepared with $12\%$ NaCl and $5\%$ KCl were $9.3\~9.9\%,\;6.1\~6.2$, and below 13 mg/100 g, respectively. The AHP was stable at $26{\pm}3^{\circ}C$ for 60 days on bacterial growth, and addition of $0.05\%$ of rosemary (Herbalox) extract was effective to inhibit the lipid oxidation of the AHP during storage.

  • PDF

Conditions for Rapid Processing of Modified Fish Sauce using Enzymatic Hydrolysis and Improvement of Product Quality 1. Fish Sauce from Mackerel Waste and Its Quality (효소분해법에 의한 개량어장유의 속성제조 및 품질에 관한 연구 1. 고등어 폐기물을 이용한 어장유의 속성제조 및 품질)

  • HAN Bong-Ho;BAE Tae-Jin;CHO Hyun-Duk;KIM Jong-Chul;KIM Byeong-Sam;CHOI Soo-Il
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.23 no.2
    • /
    • pp.109-124
    • /
    • 1990
  • A rapid processing method for fish sauce of high quality stability and favorable flavor was investigated using mackerel waste as starting material. The chopped waste was homogenized with water and hydrolyzed by commercial proteolytic enzymes such as Complex enzyme-2000($2.18\cdot10^4$ U/g solid, Pacific Chem. Co.) and Alcalase ($1.94\cdot10^4$ U/g solid, Novo) in a cylindrical vessel with 4 baffles and 6-bladed turbine impeller. Optimal pH and temperature for the hydrolysis with Complex enzyme-2000 were 8.0 and $50^{\circ}C$, and those with Alcalase were 9.0 and $55^{\circ}C$. In both cases, the reasonabe amount of added water and enzyme concentration based on the waste weight were $40\%,\;3\%$ and hydrolyzing time was 100 min. Thermal treatment of the hydrolysate with $6\%$ of invert sugar for 2 hours at $90^{\circ}C$ was adequated to inactivation of the enzymes and pasteurization of the hydrolysate. Flavor, taste and color of the hydrolysate were improved during the thermal treatment in which the browning reaction products might participate and result in antioxidative and bactericidal effects. Combined use of $0.005\%$ of Caryophylli flos with $6\%$ of invert sugar was also effective for the improvement of taste. Yield of the fish sauce based on the total nitrogen of the raw waste was $93.7\~94.9\%$, and $87.6\~87.9\%$ of the total nitrogen in the fish sauce was in the from of amino nitrogen. The pH, salinity and histamine content of the fish sauce prepared with $15\%$ of table salt were $6.1\~6.2$, $14.0\~14.5\%$ and less than $10mg\%$, respectively. The fish sauce was stable on bacterial growth during the storage of 60 days at $26\pm3^{\circ}C$ and the quality was also maintained.

  • PDF