• Title/Summary/Keyword: Turbine Design

Search Result 1,661, Processing Time 0.028 seconds

Design of 5kW-class Horizontal Axis Wind Turbine using In-house Code POSEIDON (In-house 코드 POSEIDON을 이용한 5kW급 수평축 풍력발전용 로터 블레이드 형상설계)

  • Kim, Ki-Pyoung;Kim, Ill-Soo;Choi, Young-Do;Lee, Young-Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.492-492
    • /
    • 2009
  • Nowadays in Republic of Korea, there is no distinct reference for the related design technology of rotor blade of wind turbine. Therefore the optimum design and evaluation of performance is carried out with foreign commercial code softwares. This paper shows in-house code software that evaluates the aerodynamic design of wind turbine rotor blade using blade element-momentum theory (BEMT) and processes that is applied through various aerodynamics theories such as momentum theory, blade element theory, prandtl's tip loss theory and strip theory. This paper presents the results of the numerical analysis such as distribution of aerodynamic properties and performance curves using in-house code POSEIDON.

  • PDF

Aerodynamic and Structural Design on Small Wind Turbine Blade Using High Performance Configuration and E-Glass/Epoxy-Urethane Foam Sandwich Composite Structure

  • Kong, Changduk;Bang, Johyuk
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.401-407
    • /
    • 2004
  • This study proposes a interim development result for the l-㎾ class small wind turbine system, which is applicable to relatively low wind speed regions like Korea and has the variable pitch control mechanism. In the aerodynamic design of the wind turbine blade, parametric studies were carried out to determine an optimum aerodynamic configuration which is not only more efficient at low wind speed but whose diameter is not much larger than similar class other blades. A light composite structure, which can endure effectively various loads, was newly designed. In order to evaluate the structural design of the composite blade, the structural analysis was performed by the finite element method. Moreover both structural safety and stability were verified through the full-scale structural test.

  • PDF

Turbine Design for Turbo-compound System to Recover Exhaust Gas Energy Using 1-D Mean Line Flow Model (1-D Mean Line Flow Model을 이용한 엔진 배기에너지 회수를 위한 터보컴파운드 시스템용 터빈 설계)

  • Jang, Jinyoung;Yun, Jeong-Eui
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.24 no.1
    • /
    • pp.74-81
    • /
    • 2016
  • The aim of this study was to find the initial design value of turbine blade for electrical type turbocompound system generating 10 kW. Turbocompound is one of the waste heat recovery system applying to internal combustion engine to recover exhaust gas energy that was about 30 % of total input energy. To design the turbine blade, 1-D mean line flow model was used. Exhaust gas temperature, pressure, flow rate and turbine rotating speed was fixed as primary boundary conditions. The velocity triangles was defined and used to determine the rotor inlet radius and width, the rotor outlet radius at shroud and radius at hub, the rotor flow angles and the number of blades.

A Study on Optimum Design of 2MW Wind Turbine Gearbox Using a Integrated Design Software (통합설계프로그램을 이용한 2MW 풍력발전시스템용 기어박스의 최적설계에 관한 연구)

  • Choi, Young-Hyuk;Park, Koo-Ha;Jo, Joon-Haeng;Lee, In-Woo;Oh, Sei-Woong
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.249-252
    • /
    • 2006
  • Wind turbine gearbox is a complex mechanical system that includes gear trains, shafts, bearings, and gearbox housings. All these component are interacting with each other therefore changing certain design parameter will affect other components. RomaxDesigner enables a reduction in development period by simulating the full gearbox system. The gear pairs, bearings and shafts are represented as analysis objects and the complex components are modelled by means of reduced stiffness matrices. The software allows durability analysis and advanced contact analysis including the effects of system misalignments in gear and bearing. In this paper the 2MW wind turbine gearbox was model led and a study on optimum design was conducted

  • PDF

Aerodynamic method of H-Darrieus wind turbines (H-다리우스형 풍력터빈의 공력설계 방법의 구축)

  • Jeong, Suyun;Chang, Semyeong;Lee, Jangho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.179.2-179.2
    • /
    • 2010
  • In this study, we have constructed the method of design about H-Darrieus wind turbine, a kind of VAWT(vertical axis wind turbine). The NACA 0012 airfoil is chosen for the blade, and DMS(double multiple streamtube) theory is used for the analysis. The flow field is computed with numerical solution of rotating Navier-Stokes equations. From the result of experimental data of power coefficient curves, the validity of the present research is checked. Through the non-dimensional parameter analysis for the wind turbine design, we estimated the efficiency of wind turbine with the resultant Cp's, with which an efficient design of VAWT is achieved, and aerodynamic characteristics are presented systematically.

  • PDF

A Study on the Performance of a 5 kW Scale VAWT with Omni-Directional Guide Vanes

  • Ryu, In-Ho;Hoang, Anh Dung;Kim, Jun-Ho;Lee, Ki-Seon;Yang, Chang-Jo
    • The KSFM Journal of Fluid Machinery
    • /
    • v.19 no.4
    • /
    • pp.43-47
    • /
    • 2016
  • Vertical axis wind turbine, despite of its limit in power efficiency, the simplicity in structure and maintenance is a competitive factor that keeps this type of turbine in the game until nowadays. Continuous solutions have been given to handle its major weakness and the use of omni-directional guide vane is an considerable one. In this paper, a 5kkW scale Savonius-based wind turbine enhanced with such guide vane system was design and studied. Together with reasonable blade design, the wind turbine shows promising performance compared with basic design while maintaining its original advantages.

Development of the Rotary Electrostatic Painting Equipment Using Air Turbine (공기 터빈을 이용한 회전형 정전 도장기기의 개발)

  • Lee, Chan;Cha, Sang-Won
    • 유체기계공업학회:학술대회논문집
    • /
    • 2003.12a
    • /
    • pp.684-690
    • /
    • 2003
  • A new electrostatic rotary atomizing painting equipment using air turbine was developed. Based on the overall design requirements of painting equipment basic design specifications of the equipment parts such as air turbine and atomizing disk are defined from the present conceptual design model. Air turbine is designed with the section profile of NACA airfoil, and its internal flow field is analyzed by commercial CFD code. Atomizing disk is designed to achieve the ligament type spray of paint with the use of visualization technique. Various experiments and tests are conducted to investigate the spray and the transfer characteristics of newly-designed painting equipment, and the measurement results are compared with the those of conventional painting equipments.

  • PDF

Structural Design on Small Scale Sandwich Composite Wind Turbine Blade

  • Seongjin Ahn;Hyunbum Park
    • International Journal of Aerospace System Engineering
    • /
    • v.10 no.2
    • /
    • pp.1-4
    • /
    • 2023
  • Even though the recent development trend of wind turbine systems has been focused on larger MW Classes, the small-scale wind turbine system has been continuously developed because it has some advantages due to easy personnel establishment and use with low cost and energy saving effect. This work is to propose a specific structural design and analysis procedure for development of a low noise 500W class small wind turbine system which will be applicable to relatively low wind speed region like Korea. The proposed structural feature has a skin-spar-foam sandwich composite structure with the E-glass/Epoxy face sheets and the Urethane foam core for lightness, structural stability, low manufacturing cost and easy manufacturing process. Moreover this type of structure has good behaviors for reduction of vibration and noise. Structural analysis including load cases, stress, deformation, buckling and vibration was performed using the Finite Element Method. In order to evaluate the designed blade structure the structural tests were done, and their test results were compared with the estimated results.

Study on Aerodynamic Optimization Design Process of Multistage Axial Turbine

  • Zhao, Honglei;Tan, Chunqing;Wang, Songtao;Han, Wanjin;Feng, Guotai
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.130-135
    • /
    • 2008
  • An aerodynamic optimization design process of multistage axial turbine is presented in this article: first, applying quasi-three dimensional(Q3D) design methods to conduct preliminary design and then adopting modern optimization design methods to implement multistage local optimization. Quasi-three dimensional(Q3D) design methods, which mainly refer to S2 flow surface direct problem calculation, adopt the S2 flow surface direct problem calculation program of Harbin Institute of Technology. Multistage local optimization adopts the software of Numeca/Design3D, which jointly adopts genetic algorithm and artificial neural network. The major principle of the methodology is that the successive design evaluation is performed by using an artificial neural network instead of a flow solver and the genetic algorithms may be used in an efficient way. Flow computation applies three-dimensional viscosity Navier Stokes(N-S) equation solver. Such optimization process has three features: (i) local optimization based on aerodynamic performance of every cascade; (ii) several times of optimizations being performed to every cascade; and (iii) alternate use of coarse grid and fine grid. Such process was applied to optimize a three-stage axial turbine. During the optimization, blade shape and meridional channel were respectively optimized. Through optimization, the total efficiency increased 1.3% and total power increased 2.4% while total flow rate only slightly changed. Therefore, the total performance was improved and the design objective was achieved. The preliminary design makes use of quasi-three dimensional(Q3D) design methods to achieve most reasonable parameter distribution so as to preliminarily enhance total performance. Then total performance will be further improved by adopting multistage local optimization design. Thus the design objective will be successfully achieved without huge expenditure of manpower and calculation time. Therefore, such optimization design process may be efficiently applied to the aerodynamic design optimization of multistage axial turbine.

  • PDF

Aerodynamic loads and aeroelastic responses of large wind turbine tower-blade coupled structure in yaw condition

  • Ke, S.T.;Wang, T.G.;Ge, Y.J.;Tamura, Y.
    • Structural Engineering and Mechanics
    • /
    • v.56 no.6
    • /
    • pp.1021-1040
    • /
    • 2015
  • An effective method to calculate aerodynamic loads and aeroelastic responses of large wind turbine tower-blade coupled structures in yaw condition is proposed. By a case study on a 5 MW large wind turbine, the finite element model of the wind turbine tower-blade coupled structure is established to obtain the modal information. The harmonic superposition method and modified blade-element momentum theory are used to calculate aerodynamic loads in yaw condition, in which the wind shear, tower shadow, tower-blade modal and aerodynamic interactions, and rotational effects are fully taken into account. The mode superposition method is used to calculate kinetic equation of wind turbine tower-blade coupled structure in time domain. The induced velocity and dynamic loads are updated through iterative loop, and the aeroelastic responses of large wind turbine tower-blade coupled system are then obtained. For completeness, the yaw effect and aeroelastic effect on aerodynamic loads and wind-induced responses are discussed in detail based on the calculating results.