• 제목/요약/키워드: Turbine Cooling

검색결과 240건 처리시간 0.022초

샤워헤드 막냉각면에서의 온도장 및 막냉각효율 측정 (Measurements of Temperature Field and Film-Cooling Effectiveness for a Shower-Head Film Cooling)

  • 정철희;이상우
    • 대한기계학회논문집B
    • /
    • 제24권2호
    • /
    • pp.177-187
    • /
    • 2000
  • Measurements of temperature fields and film-cooling effectiveness have been conducted for a shower-head film cooling on the leading edge of a blunt body, which simulates a first-stage turbine stator. In this study, three injection cases are employed for an average blowing ratio based on freestream velocity, M, of 0.5, 1.0 and 1.5. Two (Case 1), four (Case 2) and six (Case 3) rows of normal holes are symmetrically drilled on the three tested circular-cylinder leading edges. The measurements show that regardless of M, the film-cooling effectiveness increases as the injection row is situated at farther downstream location. In Case 1, the film-cooling effectiveness is highest for M = 0.5 and lowest for M = 1.5. On the contrary, in Case 3, the film-cooling effectiveness is highest for M = 1.0 and lowest for M = 0.5. When M = 0.5, the film coverage by the first row of the injection holes deteriorates as the number of the injection row increases. In particular, the film-cooling effectiveness due to the injection through the first row of the holes in Case 3, has a nearly zero value.

PSP를 이용한 15° 반와류 홀과 30-7-7 팬형상 홀의 막냉각 효율 비교 연구 (Comparative Study on the Film Cooling Effectiveness of 15° Angled Anti-Vortex Hole and 30-7-7 Fan-Shaped Hole Using PSP Technique)

  • 김예지;박순상;이동호;곽재수
    • 한국유체기계학회 논문집
    • /
    • 제19권4호
    • /
    • pp.13-18
    • /
    • 2016
  • The various film cooling hole shapes have been proposed for effective external cooling of gas turbine blade. In this study, the film cooling effectiveness by three different hole shapes (cylindrical hole, $15^{\circ}$ angle anti-vortex hole, 30-7-7 fan-shaped hole) were examined experimentally. Pressure Sensitive Paint (PSP) technique was used to measure the film cooling effectiveness. The coolant to mainstream density ratio was 1.0 and three blowing ratios of 0.5, 1.0, and 2.0 were considered. Results clearly showed that the effect of hole shape on the distribution of film cooling effectiveness. For the cylindrical hole case, the film cooling effectiveness decreased remarkably as the blowing ratio increased due to the jet lift off. Because of large hole exit area and low coolant momentum, the 30-7-7 fan-shaped hole case showed the highest film cooling effectiveness at all blowing ratio, followed by the anti-vortex hole case.

이산화탄소를 이용한 가스터빈 블레이드 막냉각 특성 연구 (A Numerical Study on the Film-Cooling Characteristics of Gas Turbine Blade using CO2)

  • 김상권;이종철;김윤제
    • 한국유체기계학회 논문집
    • /
    • 제15권2호
    • /
    • pp.41-44
    • /
    • 2012
  • In order to cool the turbine blade under high temperature operating conditions, the film-cooling method is generally applied. In this study, $CO_2$ was used as working fluid and it helped the operating system to prevent the loss of compressed air. The trapezoidal diffuser shape was adopted at the cross section of hole and the characteristics of heat flow with various working fluids were numerically studied. In particular, the different mixture ratios of $CO_2$, such as various density ratios of 0.2, 0.8, and 1.0, respectively, were considered. Numerical results are graphically depicted with various conditions.

냉각공기 예냉각과 연료예열에 의한 복합발전 시스템의 성능변화 (Performance Variation of a Combined Cycle Power Plant by Coolant Pre-cooling and Fuel Pre-heating)

  • 권익환;강도원;김동섭;김재환
    • 한국유체기계학회 논문집
    • /
    • 제15권3호
    • /
    • pp.57-63
    • /
    • 2012
  • Effects of coolant pre-cooling and fuel pre-heating on the performance of a combined cycle using a F-class gas turbine were investigated. Coolant pre-cooling results in an increase of power output but a decrease in efficiency. Performance variation due to the fuel pre-heating depends on the location of the heat source for the pre-heating in the bottoming cycle (heat recovery steam generator). It was demonstrated that a careful selection of the heat source location would enhance efficiency with a minimal power penalty. The effect of combining the coolant pre-cooling and fuel pre-heating was also investigated. It was found that a favorable combination would yield power augmentation, while efficiency remains close to the reference value.

가스터빈 입구에서의 유동 및 스칼라 분포 특성 (Measurement of Flow and Scalar Distribution at Gas Turbine Inlet Section)

  • 홍성국
    • 한국유체기계학회 논문집
    • /
    • 제13권4호
    • /
    • pp.45-50
    • /
    • 2010
  • The goal of paper is to investigate the flow and scalar distribution through the HP Nozzle Guide Vane (NGV) passage. Flow and scalar distribution measurement are conducted by using 5-hole pressure probe and $CO_2$ tracing technique, respectively. Three different experimental cases are considered depending on cooling flow condition. The result shows that the vortical secondary flow patterns are observed clearly and these flow characteristics maintain through the NGV passage regardless of cooling flow injection. Compared to center region, the high axial velocity flow is observed near wall region due to cooling flow injection. Without cooling flow, the $CO_2$ (scalar) distribution becomes to be uniform quickly due to the strong flow mixing phenomenon. However, in cases of cooling flow, scalar distribution is significantly non-uniform.

분사홀 형상과 분사각 변화가 터빈블레이드 선단 막냉각 특성에 미치는 영향 (Effects of Various Injection Hole Shapes and Injection Angles on the Characteristics of Turbine Blade Leading Edge Film Cooling)

  • 김윤제;권동구
    • 대한기계학회논문집B
    • /
    • 제25권7호
    • /
    • pp.933-943
    • /
    • 2001
  • Using a semi-circled blunt body model, the geometrical effects of injection hole on the turbine blade leading edge film cooling are investigated. The film cooling characteristics of two shaped holes (laterally- and streamwise-diffused holes) and three cylindrical holes with different lateral injection angles, 30°, 45°, 60°, respectively, are compared with those of cylindrical hole with no lateral injection angle experimentally and numerically. Kidney vortices, which decrease the adiabatic film cooling effectiveness, appear on downstream of the cylindrical hole with no lateral injection angle. At downstream of the two shaped holes have better film cooling characteristics than the cylindrical one. Instead of kidney vortices, single vortex appears on downstream of injection holes with lateral injection angle. The adiabatic film cooling effectiveness is symmetrically distributed along the lateral direction downstream of the cylindrical hole with no lateral injection angle. But, at downstream of the cylindrical holes with lateral injection angle, the distribution of adiabatic film cooling effectiveness in the lateral direction shows asymmetric nature and high adiabatic film cooling effectiveness regions are more widely distributed than those of the cylindrical hole with no lateral injection angle. As the blowing ratio increases, also, the effects of hole shapes and injection angles increase.

터빈 블레이드 형상 곡면에서의 막냉각 효율 특성 (The Characteristics of Film-Cooling Effectiveness on a Turbine-Blade-Shaped Surface)

  • 윤순현;류원택;김동건;김대성;김귀순
    • 대한기계학회논문집B
    • /
    • 제26권3호
    • /
    • pp.384-393
    • /
    • 2002
  • The effects of hole expansion angle and the arrangement of nozzles on a film cooling system for a turbine-blade-shaped surface were experimentally investigated. Liquid crystal with flue-temperature correlation and an image processing system were employed to evaluate surface temperature. Distributions of cooling effectiveness were then presented to figure out the change of heat transfer characteristics with different geometric conditions of cooling-holes. It was found thats the averaged cooling efficiency on the suction surface was maximum with 10 degree of the cooling hole expansion angle. It was also shown that the averaged cooling efficiency on the pressure surface and the averaged cooling efficiency for dual array case were not affected by the hole expansion angle.

수소와 산소를 이용한 가스터빈의 구동에 관한 실험 연구 (An Experimental Study about the Running of a Gas Turbine by using Hydrogen and Oxygen)

  • 강진성;오병수
    • 한국수소및신에너지학회논문집
    • /
    • 제8권1호
    • /
    • pp.5-10
    • /
    • 1997
  • Because of environmental pollution and reserve limitations of fossil fuels, several alternative energies have been developing. One of them, the hydrogen is researched as a highly probable solution. In this study pure hydrogen gas and oxygen gas are burned in combustor to reduce the emission, and a gas turbine is used. Cooling water around the combustor recovers the cooling heat loss to useful work by being expanded from liquid to vapor, being injected into the combustor and making pressure rise with working fluid to get more turbine power. Because pure hydrogen and oxygen are used, there is no carbonic emission such as CO, $CO_2$, HC nor $NO_x$, and $SO_x$. The power is obtained by turbine system, which makes lower noise and vibration than any reciprocating engine. Running of a turbine is searched under various conditions of hydrogen flow rate and water injection rate. Maximum speed of the turbine is obtained when the combustion reaches steady state. It is enable to determine the optimum rate between hydrogen flow and water injection which makes turbine run maximum speed.

  • PDF

회전하는 터빈 블레이드 내부 이차냉각유로에서 엇갈린요철과 평행요철이 열/물질전달에 미치는 영향 (Effect of Cross/Parallel Rib Configurations on Heat/Mass Transfer in Rotating Two-Pass Turbine Blade Internal Passage)

  • 이세영;이동호;조형희
    • 대한기계학회논문집B
    • /
    • 제26권9호
    • /
    • pp.1249-1259
    • /
    • 2002
  • The present study investigates the convective heat/mass transfer inside a cooling passage of rotating gas-turbine blades. The rotating duct has various configurations made of ribs with 70。 attack angle, which are attached on leading and trailing surfaces. A naphthalene sublimation technique is employed to determine detailed local heat transfer coefficients using the heat and mass transfer analogy. The present experiments employ two-surface heating conditions in the rotating duct because the surfaces, exposed to hot gas stream, are pressure and suction side surfaces in the middle passages of an actual gas-turbine blade. In the stationary conditions, the parallel rib arrangement presents higher heat/mass transfer characteristics in the first pass, however, these characteristics disappear in the second pass due to the turning effects. In the rotating conditions, the cross rib present less heat/mass transfer discrepancy between the leading and the trailing surfaces in the first pass. In the second pass, the heat/mass transfer characteristics are much more complex due to the combined effects of the angled ribs, the sharp fuming and the rotation.

대형병원 건물에 마이크로 가스터빈 적용을 위한 에너지성능 및 경제성 평가 (The Energy Performance & Economy Efficiency Evaluation of Micro Gas Turbine Installed in Hospital)

  • 김병수;홍원표
    • 한국태양에너지학회 논문집
    • /
    • 제29권5호
    • /
    • pp.8-13
    • /
    • 2009
  • Feasibilities of the application of a micro gas turbine cogeneration system to a large size hospital building are studied by estimating energy demands and supplies. The energy demand for electricity is estimated by surveying and sorting the consumption records for various equipment and devices. The cooling heating, and hot water demands are further refined with TRNSYS and ESP-r to generate load profiles for the subsequent operation simulations. The operation of the suggested cogeneration system in conjunction with the load data is simulated for a time span of a year to predict energy consumption and gain profile. The simulation revealed that the thermal efficiency of the gas turbine is about 30% and it supplies 60% of the electricity required by the building. The recovered heat can meet 56% of total heating load and 67% of cooling, and the combined efficiency reaches up to 70%.