• Title/Summary/Keyword: Turbine Blade Tip

Search Result 225, Processing Time 0.032 seconds

Flutter study of flapwise bend-twist coupled composite wind turbine blades

  • Farsadi, Touraj;Kayran, Altan
    • Wind and Structures
    • /
    • v.32 no.3
    • /
    • pp.267-281
    • /
    • 2021
  • Bending-twisting coupling induced in big composite wind turbine blades is one of the passive control mechanisms which is exploited to mitigate loads incurred due to deformation of the blades. In the present study, flutter characteristics of bend-twist coupled blades, designed for load alleviation in wind turbine systems, are investigated by time-domain analysis. For this purpose, a baseline full GFRP blade, a bend-twist coupled full GFRP blade, and a hybrid GFRP and CFRP bend-twist coupled blade is designed for load reduction purpose for a 5 MW wind turbine model that is set up in the wind turbine multi-body dynamic code PHATAS. For the study of flutter characteristics of the blades, an over-speed analysis of the wind turbine system is performed without using any blade control and applying slowly increasing wind velocity. A detailed procedure of obtaining the flutter wind and rotational speeds from the time responses of the rotational speed of the rotor, flapwise and torsional deformation of the blade tip, and angle of attack and lift coefficient of the tip section of the blade is explained. Results show that flutter wind and rotational speeds of bend-twist coupled blades are lower than the flutter wind and rotational speeds of the baseline blade mainly due to the kinematic coupling between the bending and torsional deformation in bend-twist coupled blades.

The Heat Transfer Analysis of the First Stage Blade (발전용 가스터빈 1단 동익 열전달 해석)

  • Hong, Yong-Ju;Choi, Bum-Seog;Park, Byung-Gyu;Yoon, Eui-Soo
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.30-35
    • /
    • 2001
  • To get higher efficiency of gas turbine, The designer should have more higher turbine inlet temperature (TIT). Today, modem gas turbine having sophisticated cooling scheme has TIT above $1,700^{\circ}C$. In the korea, many gas turbine having TIT above $1,300^{\circ}C$ was imported and being operated, but the gas with high TIT above $1,300^{\circ}C$ in the turbine will give damage to liner of combustor, and blade of turbine and etc. So frequently maintenance for parts enduring high temperature was performed. In this study, the heat transfer analysis of cooling air in the internal cooling channel (network analysis) and temperature analysis of the blade (Finite Element Analysis) in the first stage rotor was conducted for development of the optimal cooling passage design procedure. The results of network analysis and FEM analysis of blade show that the high temperature spot are occured at the leading edge, trailing edge near tip, and platform. so to get more reliable performance of gas turbine, the more efficient cooling method should be applied at the leading edge and tip section. and the thermal barrier coating on the blade surface has important role in cooling blade.

  • PDF

Comparisons of Aerodynamic Loss Generated by a Squealer-Tip Turbine Rotor Blade with That by a Plane-Tip One (평면팁과 스퀼러팁 터빈 동익의 압력손실 특성 비교)

  • Chae, Byoung-Joo;Lee, Sang-Woo
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.161-164
    • /
    • 2006
  • Three-dimensional flow and aerodynamic loss in the tip-leakage flow region of a high-turning first-stage turbine rotor blade with a squealer tip have been measured with a straight miniature five-hole probe for the tip gap-to-chord ratio, h/e, of 2,0%. This squealer tip has a indent-to-chord ratio, $h_{st}/c$, of 5.5%. The results are compared with those for a plane tip ($h_{st}/c\;=\;0.0%$). The squealer tip tends to reduce the mass flow through the tip gap and to suppress the development of the tip-leakage vortex. Therefore, it delivers lower aerodynamic loss in the near-tip region than the plane tip does. At the mid-span, however, the aerodynamic loss has nearly the same value for the two different tips.

  • PDF

Three-Dimensional Flow and Aerodynamic Loss Downstream of a Turbine Rotor Blade with a Squealer Tip (스퀄러팁 터빈 동익 하류에서의 3차원 유동 및 압력손실)

  • Chae, Byoung-Joo;Lee, Sang-Woo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.9 s.252
    • /
    • pp.913-920
    • /
    • 2006
  • Three-dimensional flow and aerodynamic loss in the tip-leakage flow region of a high-turning first-stage turbine rotor blade with a squealer tip have been measured with a straight miniature five-hole probe for the tip gap-to-chord ratio, h/c, of 2.0%. This squealer tip has a indent-to-chord ratio, $h/{st}/c$, of 5.5%. The results are compared with those for a plane tip $(h_{st}/c=0.0%)$. The squealer tip tends to reduce the mass flow through the tip gap and to suppress the development of the tip-leakage vortex. Therefore, it delivers lower aerodynamic loss in the near-tip region than the plane tip does. At the mid-span, however, the aerodynamic loss has nearly the same value for the two different tips.

Numerical study on Wells turbine with penetrating blade tip treatments for wave energy conversion

  • Cui, Ying;Hyun, Beom-Soo
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.8 no.5
    • /
    • pp.456-465
    • /
    • 2016
  • In order to optimize the performance of a Wells turbine with fixed guide vanes, the designs of an end plate and a ring on the tip of the turbine rotor are proposed as penetrating blade tip treatments. In this study, numerical investigations are made using computational fluid dynamics (CFD)-based ANSYS Fluent software, and validated by corresponding experimental data. The flow fields are analyzed and non-dimensional coefficients $C_A$, $C_T$ and ${\eta}$ are calculated under steady-state conditions. Numerical results show that the stalling phenomenon on a ring-type Wells turbine occurs at a flow coefficient of ${\phi}=0.36$, and its peak efficiency can reach 0.54, which is 16% higher than that of an unmodified turbine and 9% higher than in the case of an endplate-type turbine. In addition, quasi-steady analysis is used to calculate the mean efficiency and output work of a wave cycle under sinusoidal flow conditions. As a result, it has been found that the ring-type turbine is superior to other types of Wells turbines.

Heat/Mass Transfer Characteristics on Shroud with Turbine Blade Tip Clearances (터빈 블레이드 말단과 슈라우드 사이의 간극변화에 따른 슈라우드에서의 열/물질전달 특성)

  • Lee, Dong-Ho;Choe, Jong-Hyeon;Jo, Hyeong-Hui
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.3
    • /
    • pp.414-421
    • /
    • 2001
  • The present study is conducted to investigate the local heat/mass transfer characteristics on the shroud with blade tip clearances. The relative motion between blade and shroud has little influence on the overall heat transfer characteristics, except some local effects. Therefore, the relative motion between the blade and shroud is neglected in this study. A naphthalene sublimation method is employed to determine the detailed local heat/mass transfer coefficients on the surface of the shroud. The tip clearance is changed from 0.66% to 2.85% of the blade chord length. The flow enters the gap between the blade tip and shroud at the pressure side due to the pressure difference. Therefore, the heat/mass transfer characteristics on the shroud are changed significantly from those with endwall. At first, high heat/mass transfer occurs along the profile of blade at the pressure side due to the entrance effect and acceleration of the gap flow. Then, the heat/mass transfer coefficients on the shroud increase along the suction side of the blade because tip leakage vortices are generated and interact with the main flow. The results show that the heat/mass transfer characteristics are changed largely with the gap distance between the tip of turbine blade and the shroud.

Heat/Mass Transfer Characteristics on the Squealer Tip Surface of a Turbine Rotor Blade (터빈 동익 스퀼러팁 표면에서의 열(물질)전달 특성)

  • Moon, Hyun-Suk;Lee, Sang-Woo
    • The KSFM Journal of Fluid Machinery
    • /
    • v.12 no.1
    • /
    • pp.35-42
    • /
    • 2009
  • The flow and heat/mass transfer characteristics on the squealer tip surface of a high-turning turbine rotor blade have been investigated at a Reynolds number of $2.09{\times}10^5$, by employing the oil-film flow visualization and naphthalene sublimation technique. The squealer rim height-to-chord ratio and tip gap height-to-chord ratio are fixed as typical values of $h_{st}/c$ = 5.5% and h/c = 2.0%, respectively, for turbulence intensities of Tu = 0.3% and 15%. The results show that the near-wall flow phenomena within the cavity of the squealer tip are totally different from those over the plane tip. There are complicated backward flows from the suction side to the pressure side near the cavity floor, in contrast to the plane tip gap flows moving toward the suction side after flow separation/reattachment. The squealer tip provides a significant reduction in tip surface thermal load with less severe gradient compared to the plane tip. In this study, the tip surface is divided into six different regions, and transport phenomena at each region are discussed in detail. The mean thermal load averaged over the squealer cavity floor is augmented by 7.5 percents under the high inlet turbulence level.

A Study of Performance Estimate and Flow Analysis of the 500 kW Horizontal-Axis Wind Turbine by CFD (CFD에 의한 500kW급 수평축 풍력발전용 터빈의 성능평가 및 유동해석에 관한 연구)

  • Kim, Y.T.;Kim, B.S.;Kim, J.H.;Nam, C.D.;Lee, Y.H.
    • The KSFM Journal of Fluid Machinery
    • /
    • v.5 no.4 s.17
    • /
    • pp.32-39
    • /
    • 2002
  • The purpose of this 3-D numerical simulation is to calculate and examine the complex 3-D stall phenomena on the rotor blade and wake distribution of the wind turbine. The flow characteristics of 500kW Horizontal Axis Wind Turbine (HAWT) are compared with the calculated 3-D stall phenomena and wake distribution. We used the CFX-TASCflow to predict flow and power characteristics of the wind turbine. The CFD results are somewhat consistent with the BEM (Blade Element Momentum) results. And, the rotational speed becomes faster, the 3-D stall region becomes smaller. Moreover, the pressure distribution on the pressure side that directly gets the incoming wind grows high as it goes toward the tip of the blade. The pressure distribution on the blade's suction side tells us that the pressure becomes low in the leading edge of the airfoil as it moves from the hub to the tip. However, we are not able to precisely predict on the power coefficient of the rotor blade at the position of generating complex 3-D stall region.

Structural Design of Medium Scale Composite Wind Turbine Blade

  • Kong, Chang-Duk;Kim, Jong-Sik
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.1 no.1
    • /
    • pp.92-102
    • /
    • 2000
  • In this study, the 750kW medium scale composite blade for the horizontal axis wind turbine system was designed and manufactured, and it was tested and evaluated by the specific structural test rig. In the test, it was found that local bucklings at the trailing edge of the blade and excessive deflections at the blade tip were happened. In order to solve these problems, the design of blade structure was modified. After improving the design, the abrupt change of deflection at the blade tip was reduced by smooth variation of the spar thickness and the local buckling was removed by extending the web length. The modified design was analyzed by the FEM, the safety and stability of the blade structure. And Fatigue life over 20 years was confirmed by using S-N linear damage method, Spera's method, etc.

  • PDF

Effect of Relative Position of Vane and Blade on Heat/Mass Transfer Characteristics on Stationary Turbine Blade Surface (베인과 블레이드 사이의 상대위치 변화에 따른 터빈 블레이드 표면에서의 열/물질전달 특성)

  • Rhee, Dong-Ho;Cho, Hyung Hee
    • 유체기계공업학회:학술대회논문집
    • /
    • 2004.12a
    • /
    • pp.140-150
    • /
    • 2004
  • In this study, the effect of relative position of the blade for the fixed vane has been investigated on blade surface heat transfer. The experiments were conducted in a low speed stationary annular cascade, and heat transfer of blade was examined for six positions within a pitch. Turbine test section has one stage composed of sixteen guide vanes and blades. The chord length of the tested blade is 150 mm and the mean tip clearance of the blade having flat tip is about $2.5\%$ of the blade chord. For the detailed mass transfer measurements on the blade surfaces, a naphthalene sublimation technique was used. The inlet flow Reynolds number is fixed to $1.5{\times}10^5$. Complex heat transfer characteristics are observed on the blade surface due to various flow characteristics, such as separation bubble, relaminarization, transition to turbulence and leakage vortices. The distributions of velocity and turbulence intensity change significantly with the relative position due to the blockage effect of the blade. This causes the variation of heat transfer patterns on the blade surface. The results show that the flow near the leading edge get highly disturbed and deflected toward the either side of the blade when the blade leading edge is positioned close to the trailing edge of the vane. Therefore, separation bubble disappears on the pressure side and overall heat transfer on the relaminarization region is increased. But, due to reduced tip gap flow at the upstream region, the effect of leakage flow on the upstream region of the blade surface is weakened. Thus, the heat transfer characteristics significantly change with the blade positions.

  • PDF