• Title/Summary/Keyword: Turbidity flow monitoring

Search Result 24, Processing Time 0.016 seconds

Field Assessment of in Situ Remediation of NO3--contaminated Ground Water Using Zero-valent Iron/Bio Composite Media (영가철/바이오 복합처리제를 이용한 질산성 질소 오염 지하수의 현장 지중정화 적용성 평가)

  • Joo, Wan-Ho;Chang, Yoon-Young
    • Journal of Environmental Impact Assessment
    • /
    • v.30 no.1
    • /
    • pp.35-48
    • /
    • 2021
  • In this study, the assessment of field applicability of in-situ remediation of nitrate-contaminated groundwater located in Yesan-gun was performed. Zero-valent iron/bio composite media injected PRB (Permeable Reactive Barrier) and monitoring well were installed in the contaminated groundwater site and monitored main remediation indicators during the PRB operation. Nitrate, nitrite, ammonia, Fe ion, TOC, and turbidity were analyzed and the diversity and population of microorganism in the PRB installed site were investigated for the verification of effect of injected PRB. In the study site where is an agricultural area, a river flows from west to east that forms a river boundary and the southern area has an impermeable sector. It was found that nitrate flows into the river, which is similar as groundwater flow. Simulation result for the fate of nitrate in groundwater showed steady state of nitrate arrived after 3~5 years passed. However, it is just to consider current conditions with no additional input of contaminant source, if additional input of contaminant source occurs contamination dispersion and time for steady state are expected to be increased. The monitoring results showed that Fe ion, TOC and turbidity in groundwater were not clearly changed in concentration after PRB installation, which indicates adaptability of the injected PRB for remediation of groundwater with no additional harmful effect to water quality. The concentration of nitrate maintained less than 5mg/L until 42 days after PRB installation and recovered its initial concentration after 84 days passed and showed termination of reactivity of injected zero-valent iron/bio composite media for removal nitrate. Nitrite and ammonia ions found after installation of PRB indicates reductive removal of nitrate. And the outstanding increase of microorganism diversity and population of Betaproteobacteria Class which includes denitrification microorganism explains biologically reductive removal of nitrate in injected PRB.

Variation of Inflow Density Currents with Different Flood Magnitude in Daecheong Reservoir (홍수 규모별 대청호에 유입하는 하천 밀도류의 특성 변화)

  • Yoon, Sung-Wan;Chung, Se-Woong;Choi, Jung-Kyu
    • Journal of Korea Water Resources Association
    • /
    • v.41 no.12
    • /
    • pp.1219-1230
    • /
    • 2008
  • Stream inflows induced by flood runoffs have a higher density than the ambient reservoir water because of a lower water temperature and elevated suspended sediment(SS) concentration. As the propagation of density currents that formed by density difference between inflow and ambient water affects reservoir water quality and ecosystem, an understanding of reservoir density current is essential for an optimization of filed monitoring, analysis and forecast of SS and nutrient transport, and their proper management and control. This study was aimed to quantify the characteristics of inflow density current including plunge depth($d_p$) and distance($X_p$), separation depth($d_s$), interflow thickness($h_i$), arrival time to dam($t_a$), reduction ratio(${\beta}$) of SS contained stream inflow for different flood magnitude in Daecheong Reservoir with a validated two-dimensional(2D) numerical model. 10 different flood scenarios corresponding to inflow densimetric Froude number($Fr_i$) range from 0.920 to 9.205 were set up based on the hydrograph obtained from June 13 to July 3, 2004. A fully developed stratification condition was assumed as an initial water temperature profile. Higher $Fr_i$(inertia-to-buoyancy ratio) resulted in a greater $d_p,\;X_p,\;d_s,\;h_i$, and faster propagation of interflow, while the effect of reservoir geometry on these characteristics was significant. The Hebbert equation that estimates $d_p$ assuming steady-state flow condition with triangular cross section substantially over-estimated the $d_p$ because it does not consider the spatial variation of reservoir geometry and water surface changes during flood events. The ${\beta}$ values between inflow and dam sites were decreased as $Fr_i$ increased, but reversed after $Fr_i$>9.0 because of turbulent mixing effect. The results provides a practical and effective prediction measures for reservoir operators to first capture the behavior of turbidity inflow.

A Study on Improving Installation Guideline of Facilities to Protect Groundwater Contamination: Applications of Packer Grouting to Contaminated Wells (지하수오염방지 시설기준의 개선에 관한 연구:지하수오염관정에의 팩커그라우팅 적용사례)

  • Choo, Chang-Oh;Ryu, Jong-Heum;Cho, Heuy Nam;Jeong, Gyo-Cheol
    • The Journal of Engineering Geology
    • /
    • v.23 no.3
    • /
    • pp.293-304
    • /
    • 2013
  • Because the present groundwater law broadly regulates a simple and impractical guideline ignoring aquifer characters and geology, general purpose facilities for protection of groundwater contamination is still considered unsatisfactory to ensure groundwater resources. In recent, there have been growing attempts in the packer development as crucial techniques and devices for groundwater protection. This study investigated the application of packer grouting techniques to contaminated groundwaters of two well sites in the Andong and Yeongi areas, both of which revealed a satisfactory effect with improved water quality: 94% decrease in turbidity at the Andong area and 60% decrease in $NO_3$-N, respectively. Based on aquifer characters including geology, weathering depth, fracture pattern, hydraulic gradient, and the flow path of contaminants, the integrated properties of groundwater contamination should be evaluated and treated with the help of accurate analyses such as bore hole imaging and monitoring data. Packer grouting and casing on well to ensure the useful aquifer free of contaminant are expected to play important role in inhibiting the inflow of contaminants when adequately applied. Therefore it is concluded that these can serve as reliable tools in remediation and protection of contaminated groundwater as well as efficient utilization of groundwater.

Evaluation of effectiveness of Smart Water City in Korea - Smart Water City project in Paju City, Gyeonggi Province (한국 스마트워터시티의 효과성 평가 - 경기도 파주시 스마트워터시티 사업을 중심으로)

  • Lee, Yookyung;Lee, Seungho
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.spc1
    • /
    • pp.813-826
    • /
    • 2020
  • This study analyzes the effects of the Smart Water City (SWC) project that was introduced from 2014 to 2016 in Paju City, Gyeonggi Province, Korea, focusing on the achievement of the business goals. The SWC is referred to as a city that embraces a healthy water supply system based on Smart Water Management (SWM) that promotes the efficiency of water management by combining Information and Communication Technologies (ICTs) with water and sewerage facilities. In order to evaluate the effectiveness of the SWC project, this study deploys evaluation criteria corresponding to the project objectives, and analyzes the outputs before and after the project. The results show that the SWC has contributed to enhancing water supply services and the reliability and drinking rate of tap water. Specific improvement areas include the rise of average water flow rate and water leakage reduction, the diffusion of water quality monitoring system, and the reduction of floating particle concentration and turbidity in drainage pipes was achieved. These were possible because of specific implementation plans for clear goal setting and achievement and active services for citizens. The data related to water quantity and quality showed improved performance compared to before the introduction of SWMS, which is a positive effect. However, a quantitative analysis of the outputs has limitations in identifying other external factors that have led to the changes. In the future, guidelines for spreading SWC and more comprehensive and specific evaluation indicators for SWC should be prepared, and SWMS should be developed in consideration of the needs of users.