• Title/Summary/Keyword: Turbidimeter

Search Result 12, Processing Time 0.025 seconds

New Test Methods of Retention and Drainage Using Multi-channel Turbidimeter and Balance Recorder

  • Son, Dong-Jin;Kim, Bong-Yong
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.38 no.5 s.118
    • /
    • pp.31-37
    • /
    • 2006
  • This study was performed to find effective measuring methods of retention and drainage by comparing traditional measuring methods of Britt jar, Canadian standard freeness tester methods and recently developed RDA-HSF with multi-channel turbidimeter method. At the result, Multi-channel turbidimeter method was useful to measure retention and efficiency of multiple chemical dosing system. A system CSF equipped with the balance recorder was also useful to obtain dynamic drainage information including initial drainage rate and final drainage amount. Therefore, we consider these new measuring systems would be helpful to advance retention and drainage technology.

Evaluation of Stock Flocculation Phenomena Based on Turbidity Measurement (탁도 측정을 통한 지료의 응집거동 평가)

  • Lee, Ji-Young;Youn, Hye-Jung;Lee, Hak-Lae
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.40 no.4
    • /
    • pp.10-15
    • /
    • 2008
  • Flocculation phenomena of the stock mixed with cellulosic fibers, fillers and polymers were investigated by a new turbidity measurement system consisted of a probe-type turbidimeter, data acquisition system and computer. The probe-type turbidimeter allowed to measure the real time flocculation of the stock induced by single polymer and microparticle systems. Flocculation phenomena were evaluated by average and final relative turbidity indices. Turbidity and flocculation showed inverse relationship, i.e. the turbidity decreased with the formation of flocs. Relative turbidity of the stock treated with microparticle system was lower than that of the stock containing single polymer system, which indicated that the microparticle system showed greater floc forming efficiency than single polymer system.

A Study on the Flow Fields of Bubble Trap of Turbidimeter Using the Multiphase Model (다상모델을 이용한 탁도계 버블트랩 내부 유동장에 관한 고찰)

  • Lee, Kye-Bock;Kim, Young-Do
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.11
    • /
    • pp.963-970
    • /
    • 2007
  • The objectives of this study are to examine a bubble trap mechanism of the turbidimeter for low turbidity and to acquire it's technology concerned. Reynolds-Averaged Wavier-Stokes equation and Laglangian discrete phase model were applied to analyze a flow field in the bubble trap. 3D hybrid grid system was used to simulate the flow field of bubble trap and numbers of it's node point are about 110,000. From the comparison between the standard $k-{\varepsilon}$ model and the laminar state, it was found that the former estimated less the velocity in the outlet of bubble trap than the latter did, and that the former estimated more the shear stress at the wall of bubble trap than the latter did. And, it was possible to visualize the path of bubbles in the bubble trap and to copy the removal process of bubbles out bubble trap. Also, it was found that nearly most of bubbles in the bubble trap disappeared.

Application of Particle Counter in Water Treatment Process (정수처리공정에서의 입자분석 적용방안)

  • Shin, Sang-Hee;Jeon, Hyun-Sook;Lee, Chan-Hyung;Bae, Gi-Soo
    • Journal of Korean Society on Water Environment
    • /
    • v.29 no.3
    • /
    • pp.337-342
    • /
    • 2013
  • The particle counter compared with the turbidimeter provides good precision and sensitivity and can get the characteristics of particulates effectively. The purpose of this study is to provide the application of particle counter in sand and activated carbon filters. The particle count by size could be more easily sense when the water quality is changed by the influent of high turbidity or algae. We could decide the optimal backwashing cycles and detect the efficiencies of filters by monitoring the total particle count of effluent in sand and activated carbon filters.

Solubilization Mechanism of Hydrocarbon Oils by Polymeric Nonionic Surfactant Solution (고분자 비이온 계면활성제 수용액에 의한 탄화수소 오일의 가용화 메커니즘)

  • Bae, Min Jung;Lim, Jong Choo
    • Korean Chemical Engineering Research
    • /
    • v.47 no.1
    • /
    • pp.24-30
    • /
    • 2009
  • In this study, solubilization experiments of n-decane, n-undecane and n-dodecane oil were performed by micellar solutions of polymeric nonionic surfactant Pluronic L64($EO_{13}PO_{30}EO_{13}$) at room temperature. A single spherical drop of hydrocarbon oil was injected into aqueous surfactant solution using an oil drop contacting technique and solubilization rate of hydrocarbon oil was measured by observing the size of oil drop with time. It was shown that solubilization rate decreased with the alkane carbon number(ACN) of the hydrocarbon oil. The solubilization rate was also found to be independent of initial oil dorp size and almost linearly proportional to the initial surfactant concentration. These results revealed that solubilization of n-decane, n-undecane and n-dodecane oils by L64 micellar solution is controlled by interface-controlled mechanism but not by diffusion-controlled mechanism. The equilibrium solubilization capacity(ESC) was measured by a turbidimeter and the result showed that EAC decreased with an increase in ACN but increased with both increases in surfactant concentration and solubilization rate. Dynamic interfacial tension measurements showed that interfacial tension and equilibrium time increased with an increase in ACN of hydrocarbon oil but decreased with an increase in surfactant concentration.

The Experimental Study on Optical Characteristics of a Detector by Turbidity Variance (탁도 변화에 따른 검출기의 광원특성에 관한 실험적 고찰)

  • Kim, Young-Do;Lee, Kye-Bock
    • The KSFM Journal of Fluid Machinery
    • /
    • v.10 no.6
    • /
    • pp.50-56
    • /
    • 2007
  • In this study, we have performed some experimental works on the effects of variation of low, middle and high turbidity for understanding of optical characteristics which is very important factor for the turbidity measurement. The various output frequencies were obtained by the experimental apparatus which consist of detectors, a light source, a frequency counter and so on. From the result of analysis of these frequencies, Firstly, The difference of signal value for each degrees of low turbidity was the smallest of three scopes around the Nephelometric position. Second, the characteristics of each degrees of middle turbidity was proved that signal values of all degrees were larger those of low turbidity but the difference of each signal value of the forward direction was smaller than that of the backward direction. Third, the characteristics of each degrees of high turbidity was proved that though similar to the characteristics of middle turbidity, each signal value of all degrees was larger and the difference of each signal value of all degrees was smaller than those of low and middle turbidity

Condition and Mechanism of Precipitation of Intravesicular Aluminum Ion in Preparation of Monodispersed Spherical Fine Particles With Use of Vesicles (베시클을 이용한 단분산 구형 미분체 합성에서 베시클 내 알루미늄 이온의 침전조건과 침전메카니즘)

  • Chung, Jong Jae;Kim, Chang Hyun;Lee, Byung Kyo;Ri, Chang Seop;Lee, Hae Wook
    • Journal of the Korean Chemical Society
    • /
    • v.40 no.8
    • /
    • pp.535-541
    • /
    • 1996
  • In preparation of fine alumina powders with use of vesicle, the effect of variation of pH in extravesicular dispersion system to mechanism of precipitation and shape and size distribution of precipitate was investigated. The results of observation by TEM and turbidimeter were obtained as follows. Reaction between aluminum ion and hydroxyl ion to produce precipitate within vesicle was initiated at pH 11.4 and spherical fine precipitates, about 50 nm size, were formed at pH 12.0. About pH 12.3, size of precipitates in vesicle grew twice as great as those formed below pH 12.0 because of the agglomeration and coalescence of vesicleswith time.

  • PDF

Sediment monitoring for hydro-abrasive erosion: A field study from Himalayas, India

  • Rai, Anant Kr.;Kumar, Arun
    • International Journal of Fluid Machinery and Systems
    • /
    • v.10 no.2
    • /
    • pp.146-153
    • /
    • 2017
  • Sediment flow through hydropower components causes hydro-abrasive erosion resulting in loss of efficiency, interruptions in power production and downtime for repair/maintenance. Online instruments are required to measure/capture the variations in sediment parameters along with collecting samples manually to analyse in laboratory for verification. In this paper, various sediment parameters viz. size, concentration (TSS), shape and mineral composition relevant to hydro-abrasive erosion were measured and discussed with respect to a hydropower plant in Himalayan region, India. A multi-frequency acoustic instrument was installed at a desilting chamber to continuously monitor particle size distribution (PSD) and TSS entering the turbine during 27 May to 6 August 2015. The sediment parameters viz. TSS, size distribution, mineral composition and shape entering the turbine were also measured and analysed, using manual samples collected twice daily from hydropower plant, in laboratory with instruments based on laser diffraction, dynamic digital image processing, gravimetric method, conductivity, scanning electron microscope, X-ray diffraction and turbidity. The acoustic instrument was able to capture the variation in TSS; however, significant deviations were found between measured mean sediment sizes compared to values found in the laboratory. A good relation was found for turbidity ($R^2=0.86$) and laser diffraction ($R^2=0.93$) with TSS, which indicated that turbidimeter and laser diffraction instrument can be used for continuous monitoring of TSS at the plant. Total sediment load passed through penstock during study period was estimated to be 15,500 ton. This study shall be useful for researchers and hydropower managers in measuring/monitoring sediment for hydro-abrasive erosion study in hydropower plants.

Estimation of Turbidity Relationship of Reservoir Sediment Using Band-ratio (밴드비를 이용한 저수지 토사의 탁도 관계식 추정)

  • Shin, Hyoung-Sub;Park, Jong-Hwa;Lee, Kyu-Ho
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2010.05a
    • /
    • pp.1063-1068
    • /
    • 2010
  • 최근 들어 지구온난화의 영향 등 기후변화에 따라 호우의 빈도와 강도가 증가하여 홍수피해가 확대되고 토사재해, 댐과 저수지의 퇴사 문제가 심각하게 대두되고 있다. 특히 농업용저수지의 경우 제체가 노후화되고 유입토사에 의한 퇴사는 심각한 수준에 있다. 또한 도심중심의 다양한 공사 등은 토지 이용과 피복을 변화시켜 많은 토사 유출의 원인이 되고 있다. 이렇게 노출된 토사는 탁수발생원이 되고, 토사와 부유물로 형성된 탁수환경은 수중의 태양복사에너지 전달을 방해하여 수중생태계의 먹이사슬과 저서생물의 서식환경에 악영향을 미치고 있다. 특히 농업용 저수지는 반폐쇄성 수역으로써 탁수환경에 노출되기 쉬우며, 수질회복에는 많은 노력과 비용이 소요된다. 또한 탁수환경의 변화는 시 공간적으로 발생하고 지속적으로 일어나기 때문에 탁수환경에 미치는 토사에 대한 연구는 우선적으로 시행되어야 한다. 이러한 토사 정보의 추출 및 분석에 RS기법의 활용은 증대되고 있으나 우리나라에서는 아직 연구가 미진하여, 이에 대한 기초연구가 시급한 실정이다. 본 연구는 2단계로 진행하였다. 먼저 1단계는 탁도계(2100P turbidimeter)를 이용하여 토사농도 변화에 따른 탁도를 측정하여 탁도 관계식을 추정하였다. 2단계는 분광복사계(LI-1800)를 이용하여 토사농도 변화에 따른 분광반사율을 측정하고, 얻어진 결과는 도함수와 적분의 수치해석 방법으로 토사농도를 측정할 수 있는 최적밴드를 구하였다. 다음으로 각 밴드간의 비를 계산하여 탁수환경을 측정할 수 있는 가장 적합한 밴드 조합식을 구하였다. 얻어진 밴드 조합식은 1단계에서 추정한 토사농도에 따른 탁도 관계식과의 상관관계를 분석하여 분광복사계를 이용한 탁도 관계식을 추정하였다. 그 결과, 6개의 탁도 관계식이 추정되었으며 결정계수 $R^2$는 0.67의 높은 상관성을 보였다.

  • PDF