• Title/Summary/Keyword: Turag River

Search Result 3, Processing Time 2.502 seconds

Heavy Metal Contamination in Surface Water Used for Irrigation: Functional Assessment of the Turag River in Bangladesh

  • Arefin, M. Taufique;Rahman, M. Mokhlesur;Wahid-U-Zzaman, M.;Kim, Jang-Eok
    • Journal of Applied Biological Chemistry
    • /
    • v.59 no.1
    • /
    • pp.83-90
    • /
    • 2016
  • The aim of the present study was to evaluate the degree of metal contamination of the Turag River water and its suitability for irrigation. Twenty water samples were analyzed for physicochemical parameters and metals viz., calcium, magnesium, potassium (K), sodium, copper (Cu), zinc (Zn), iron (Fe), manganese (Mn), lead (Pb), cadmium (Cd), chromium (Cr), and nickel (Ni). All water samples were slightly alkaline to alkaline. Regarding electrical conductivity (EC), all samples were suitable for crop in soils with moderate permeability and leaching. Water samples were medium salinity and low alkalinity hazard classes. In terms of total dissolved solids (TDS), all samples were classified as freshwater. As per sodium adsorption ratio (SAR) and soluble sodium percentage (SSP), all samples were classified as excellent. No residual sodium carbonate (RSC) was detected in any of the samples, indicating suitability for irrigation; and all samples were considered very hard. Cr and Mn contents in all samples were above FAO guideline values and, therefore, these metals were considered toxic. Zn, Cu, Pb, Cd, and Ni concentrations were below acceptable limit for irrigation and do not pose a threat to soil environment. Significant relationships were found between EC and TDS, SAR and SSP, SAR and RSC, and SSP and RSC. The combinations of ions such as K-Zn, K-Fe, K-Cu, K-Mn, K-Pb, Zn-Fe, Zn-Cu, Zn-Mn, Fe-Mn, Cu-Mn, Cu-Pb and Mn-Pb exhibited significant correlation. This study revealed that Turag River water samples are contaminated with Cr and Mn. This fact should not be ignored because water contamination by metals may pose a threat to human health through food chain.

Exploration of Metallic Contamination in Fish Species of the Polluted Rivers in Bangladesh

  • Rahman, Mokhlesur;Jiku, Abu Sayem;Alim, Abdul;Kim, Jang-Eok
    • Journal of Applied Biological Chemistry
    • /
    • v.57 no.2
    • /
    • pp.131-136
    • /
    • 2014
  • An attempt was made to assess metal ionic toxicity levels of different fishes in the polluted rivers viz., Buriganga and Turag. Fish samples collected from two polluted rivers were analyzed for the levels of metals such as Cd, Cr, Cu, Mn, Pb, and Zn in order to elucidate the status of these contaminants in fish meant for human consumption. The detected concentrations of Cr, Cu, Mn, and Zn ions in fish species collected from the polluted rivers were below the toxic levels and did not appear to pose a threat. Among the analyzed metals, Cd and Pb ions were detected above the permissible levels in liver and muscle tissues of stinging catfish (Heteropneustesfossilis), spotted snakehead (Channapunctata) and wallago (Wallagoattu) collected from the polluted rivers causing toxicity for human consumption. Stinging catfish (Heteropneustesfossilis) was the species found to highly bioaccumulate these metals. Fish species bioconcentrated appreciable amounts of Cd and Pb as toxic metals in the liver as compared to the muscle. Levels of these toxic metals varied depending on different tissues in fish species.

Impact of urbanization and industrialization on irrigation water quality of a canal - a case study of Tongi canal, Bangladesh

  • Zakir, H.M.;Islam, Md. Mahidul;Hossain, Md. Sohrab
    • Advances in environmental research
    • /
    • v.5 no.2
    • /
    • pp.109-123
    • /
    • 2016
  • The Dhaka city, the capital of Bangladesh is one of the most densely populated cities in the world. Tongi canal is situated on the north of the city, which connected the Turag river to the west and the Balu river to the east. A total of 26 water samples were collected from the canal to measure irrigation water quality on the basis of their trace metal and major ionic constituents. Trace metals concentrations in water samples were determined using an Atomic Absorption Spectrophotometer. The amount of Fe, Mn, Zn and Pb in water samples ranged from 0.01-0.80, trace-1.02, trace-0.054 and $0.43-0.64{\mu}g\;mL^{-1}$, respectively. The mean concentration of Ca, Mg, Na, K, $HCO_3{^-}$, $Cl^-$, $BO{_3}^{3-}$, $PO{_4}^{3-}$ and $SO{_4}^{2-}$ in water samples were 45.32, 15.33, 151.65, 11.98, 516.06, 94.69, 0.33, 14.02 and $56.21{\mu}g\;mL^{-1}$, respectively. In respect of $HCO_3{^-}$, $SO{_4}^{2-}$, $PO{_4}^{3-}$ and K contents, most of the water samples were found problematic for irrigation. In context of RSC and hardness, 96 and 92% of water samples were graded as unsuitable and hard class, respectively. The study concluded that Pb content in canal water was comparatively high, so it is desirable to take necessary initiative to minimize the contamination level and to monitor its concentration in water routinely.